数据准备
数据下载:《莎士比亚全集》
我们先来看看原始数据:首先将数据加载到RDD,然后显示数据框的前15行。
shakespeareDF = sqlContext.read.text(fileName)
shakespeareDF.show(15, truncate=False)
输出如下:
+-------------------------------------------------------+
|value |
+-------------------------------------------------------+
|1609 |
| |
|THE SONNETS |
| |
|by William Shakespeare |
| |
| |
| |
| 1 |
| From fairest creatures we desire increase, |
| That thereby beauty's rose might never die, |
| But as the riper should by time decease, |
| His tender heir might bear his memory: |
| But thou contracted to thine own bright eyes, |
| Feed'st thy light's flame with self-substantial fuel,|
+-------------------------------------------------------+
数据清洗
因为原始数据包括标点符号,大小写字符,空行。所以我们需要对数据进行清洗。所以我提供了一个removePunctuation函数。这个函数将去掉了标点,删除了句子两端的多余的空格,并将字符全部转换为小写。
from pyspark.sql.functions import regexp_replace, trim, lower
def removePunctuation(column):
return lower(trim(regexp_replace(column, '[^\w\s]', '')))
为了使用这个函数,我们先来看一个例子。
sentenceDF = (sqlContext
.createDataFrame([('Hi, you!',),
(' No under_score!',),
(' * Remove punctuation then spaces * ',)], ['sentence']))
sentenceDF.show(truncate=False)
原始的数据框输出如下:
+------------------------------------------+
|sentence |
+------------------------------------------+
|Hi, you! |
| No under_score! |
| * Remove punctuation then spaces * |
+------------------------------------------+
接下来使用removePunctuation进行清洗。
from pyspark.sql.functions import col
(sentenceDF
.select(removePunctuation(col('sentence')).alias('sentence'))
.show(truncate=False))
清洗后的数据框输出如下:
+------------------------------+
|sentence |
+------------------------------+
|hi you |
|no under_score |
|remove punctuation then spaces|
+------------------------------+
有了这个函数,我们就能对《莎士比亚全集》进行清洗了,首先将shakespeare.txt加载到RDD,并使用removePunctuation函数对数据进行清洗.
from pyspark.sql.functions import col
fileName = "shakespeare.txt"
shakespeareDF = (sqlContext
.read
.text(fileName)
.select(removePunctuation(col('value')).alias('value')))
shakespeareDF.show(15, truncate=False)
清洗后的数据框输出如下:
+-------------------------------------------------+
|value |
+-------------------------------------------------+
|1609 |
| |
|the sonnets |
| |
|by william shakespeare |
| |
| |
| |
|1 |
|from fairest creatures we desire increase |
|that thereby beautys rose might never die |
|but as the riper should by time decease |
|his tender heir might bear his memory |
|but thou contracted to thine own bright eyes |
|feedst thy lights flame with selfsubstantial fuel|
+-------------------------------------------------+
接下来,我们使用split函数分隔每一行的句子,然后用explode函数将行转列,得到一个包括所有单词的数据框,最后使用where函数过滤掉数据框的空行。
from pyspark.sql.functions import split, explode
shakeWordsDF = (shakespeareDF
.select(explode(split(shakespeareDF.value, ' ')).alias('word'))
.where("word<>''"))
shakeWordsDF.show()
shakeWordsDFCount = shakeWordsDF.count()
print shakeWordsDFCount
转换后的数据框输出如下:
+-----------+
| word|
+-----------+
| 1609|
| the|
| sonnets|
| by|
| william|
|shakespeare|
| 1|
| from|
| fairest|
| creatures|
| we|
| desire|
| increase|
| that|
| thereby|
| beautys|
| rose|
| might|
| never|
| die|
+-----------+
数据统计
为了统计单词数,我提供一个wordCount函数,它作用是按单词进行分组,然后统计各个分组中单词的个数,最后返回包含word和count列的数据框。
def wordCount(wordListDF):
return wordListDF.groupBy('word').count()
先来看一个使用wordCount函数的例子:
wordsDF = (sqlContext
.createDataFrame([('cat',), ('elephant',), ('rat',), ('rat',), ('cat', )], ['word']))
wordCount(wordsDF).show()
wordCount(words)
wordCount函数返回的数据框输出如下:
+--------+-----+
| word|count|
+--------+-----+
| cat| 2|
| rat| 2|
|elephant| 1|
+--------+-----+
接下来使用wordCount函数统计《莎士比亚全集》的单词数,然后按照count列降序排列。
from pyspark.sql.functions import desc
topWordsAndCountsDF = wordCount(shakeWordsDF).orderBy(desc('count'))
topWordsAndCountsDF.show()
排序后的数据框输出如下所示
+----+-----+
|word|count|
+----+-----+
| the|27361|
| and|26028|
| i|20681|
| to|19150|
| of|17463|
| a|14593|
| you|13615|
| my|12481|
| in|10956|
|that|10890|
| is| 9134|
| not| 8497|
|with| 7771|
| me| 7769|
| it| 7678|
| for| 7558|
| be| 6857|
| his| 6857|
|your| 6655|
|this| 6602|
+----+-----+
总结
可以看到,出现次数较多的单词大都是停用词。