Python机器学习:PCA与梯度上升:05高维数据映射成低维数据(封装一个PCA)

使用封装后的PCA进行操作

import numpy as np
import matplotlib.pyplot as plt
from pcaa.PCA import PCA

生成数据

X = np.empty((100,2))
X[:,0] = np.random.uniform(0,100,size=100)#产生实数
X[:,1] = 0.75 * X[:,0] + 3. +np.random.normal(0,10,size=100)
pca = PCA(n_components=2)
pca.fit(X)
print(pca.components_)
[[ 0.77420752  0.63293184]
 [-0.63292993  0.77420909]]

降维操作,此时维度变成1

#降维操作
pca = PCA(n_components=1)
pca.fit(X)
X_reduction = pca.transform(X)
print(X_reduction.shape)
(100, 1)

恢复维度

#恢复
X_restore = pca.inverse_transform(X_reduction)
print(X_restore.shape)
(100, 2)


绘图

  1. 蓝色是原本的样本点
  2. 红色是维度恢复之后的点
  3. 绿色的线是w1的方向
plt.scatter(X[:,0],X[:,1],color = 'b')
plt.scatter(X_restore[:,0],X_restore[:,1],color = 'r')
plt.plot([0,0.77 * 100] ,[0,0.63 * 100],color = 'g')

Python机器学习:PCA与梯度上升:05高维数据映射成低维数据(封装一个PCA)

Python机器学习:PCA与梯度上升:05高维数据映射成低维数据(封装一个PCA)
主成分分析法本质就是从一个坐标系转换到另一个坐标系

如何从n维转换成k维??

Python机器学习:PCA与梯度上升:05高维数据映射成低维数据(封装一个PCA)
Python机器学习:PCA与梯度上升:05高维数据映射成低维数据(封装一个PCA)

反向映射
Python机器学习:PCA与梯度上升:05高维数据映射成低维数据(封装一个PCA)
封装的PCA.py

import numpy as np

class PCA():
    def __init__(self,n_components):
        """初始化pca"""
        assert n_components >=1,"n_components must be valid"

        self.n_components = n_components
        self.components_ = None

    def fit(self,X,eta = 0.01,n_iters = 1e4):
        """获得数据集X的前n个主成分"""

        assert self.n_components <= X.shape[1],\
        "n_components must not be greater than the feature number of X"

        def demean(X):
            return X - np.mean(X, axis=0)  # 1*n向量

        def f(w, X):
            return np.sum((X.dot(w) ** 2)) / len(X)

        def df(w, X):
            return X.T.dot(X.dot(w)) * 2 / len(X)

        def direction(w):
            return w / np.linalg.norm(w)  # 求模

        def first_component(X, initial_w, eta, n_iters=1e4, epsilon=1e-8):

            w = direction(initial_w)
            cur_iter = 0

            while cur_iter < n_iters:
                gradient = df(w, X)
                last_w = w
                w = w + eta * gradient
                w = direction(w)  # 注意 每次w都要求成单位向量
                if (np.abs(f(w, X) - f(last_w, X)) < epsilon):
                    break

                cur_iter += 1
            return w

        X_pca = demean(X)
        self.components_ = np.empty(shape = (self.n_components,X.shape[1]))

        for i in range(self.n_components):
            initial_w = np.random.random(X_pca.shape[1])
            w = first_component(X_pca, initial_w,eta,n_iters)
            self.components_[i,:] = w

            X_pca = X_pca - X_pca.dot(w).reshape(-1, 1) * w

        return self

    def transform(self,X):
        """将给定的X,映射到各个主成分分量中"""
        assert X.shape[1] == self.components_.shape[1]

        return X.dot(self.components_.T)

    def inverse_transform(self,X):
        """将给定的X,反向映射回来原来的特征空间"""
        assert X.shape[1] == self.components_.shape[0]

        return X.dot(self.components_)


    def __repr__(self):
        return 'PCA(n_components = %d)' % self.n_components
if __name__ == '__main__':
    X = np.empty((100, 2))
    X[:, 0] = np.random.uniform(0, 100, size=100)  # 产生实数
    X[:, 1] = 0.75 * X[:, 0] + 3. + np.random.normal(0, 10, size=100)
    # %%
    pca = PCA(n_components=2)
    pca.fit(X)
    print(pca.components_)
    #降维操作
    pca = PCA(n_components=1)
    pca.fit(X)
    X_reduction = pca.transform(X)
    print(X_reduction.shape)
    #恢复
    X_restore = pca.inverse_transform(X_reduction)
    print(X_restore.shape)
上一篇:PCA主成分分析


下一篇:主成分分析法(PCA)