使用封装后的PCA进行操作
import numpy as np
import matplotlib.pyplot as plt
from pcaa.PCA import PCA
生成数据
X = np.empty((100,2))
X[:,0] = np.random.uniform(0,100,size=100)#产生实数
X[:,1] = 0.75 * X[:,0] + 3. +np.random.normal(0,10,size=100)
pca = PCA(n_components=2)
pca.fit(X)
print(pca.components_)
[[ 0.77420752 0.63293184]
[-0.63292993 0.77420909]]
降维操作,此时维度变成1
#降维操作
pca = PCA(n_components=1)
pca.fit(X)
X_reduction = pca.transform(X)
print(X_reduction.shape)
(100, 1)
恢复维度
#恢复
X_restore = pca.inverse_transform(X_reduction)
print(X_restore.shape)
(100, 2)
绘
绘图
- 蓝色是原本的样本点
- 红色是维度恢复之后的点
- 绿色的线是w1的方向
plt.scatter(X[:,0],X[:,1],color = 'b')
plt.scatter(X_restore[:,0],X_restore[:,1],color = 'r')
plt.plot([0,0.77 * 100] ,[0,0.63 * 100],color = 'g')
主成分分析法本质就是从一个坐标系转换到另一个坐标系
如何从n维转换成k维??
反向映射
封装的PCA.py
import numpy as np
class PCA():
def __init__(self,n_components):
"""初始化pca"""
assert n_components >=1,"n_components must be valid"
self.n_components = n_components
self.components_ = None
def fit(self,X,eta = 0.01,n_iters = 1e4):
"""获得数据集X的前n个主成分"""
assert self.n_components <= X.shape[1],\
"n_components must not be greater than the feature number of X"
def demean(X):
return X - np.mean(X, axis=0) # 1*n向量
def f(w, X):
return np.sum((X.dot(w) ** 2)) / len(X)
def df(w, X):
return X.T.dot(X.dot(w)) * 2 / len(X)
def direction(w):
return w / np.linalg.norm(w) # 求模
def first_component(X, initial_w, eta, n_iters=1e4, epsilon=1e-8):
w = direction(initial_w)
cur_iter = 0
while cur_iter < n_iters:
gradient = df(w, X)
last_w = w
w = w + eta * gradient
w = direction(w) # 注意 每次w都要求成单位向量
if (np.abs(f(w, X) - f(last_w, X)) < epsilon):
break
cur_iter += 1
return w
X_pca = demean(X)
self.components_ = np.empty(shape = (self.n_components,X.shape[1]))
for i in range(self.n_components):
initial_w = np.random.random(X_pca.shape[1])
w = first_component(X_pca, initial_w,eta,n_iters)
self.components_[i,:] = w
X_pca = X_pca - X_pca.dot(w).reshape(-1, 1) * w
return self
def transform(self,X):
"""将给定的X,映射到各个主成分分量中"""
assert X.shape[1] == self.components_.shape[1]
return X.dot(self.components_.T)
def inverse_transform(self,X):
"""将给定的X,反向映射回来原来的特征空间"""
assert X.shape[1] == self.components_.shape[0]
return X.dot(self.components_)
def __repr__(self):
return 'PCA(n_components = %d)' % self.n_components
if __name__ == '__main__':
X = np.empty((100, 2))
X[:, 0] = np.random.uniform(0, 100, size=100) # 产生实数
X[:, 1] = 0.75 * X[:, 0] + 3. + np.random.normal(0, 10, size=100)
# %%
pca = PCA(n_components=2)
pca.fit(X)
print(pca.components_)
#降维操作
pca = PCA(n_components=1)
pca.fit(X)
X_reduction = pca.transform(X)
print(X_reduction.shape)
#恢复
X_restore = pca.inverse_transform(X_reduction)
print(X_restore.shape)