http://acm.sdut.edu.cn:8080/vjudge/contest/view.action?cid=259#problem/C
Description
Recall the definition of the Fibonacci numbers:
f1 := 1
f2 := 2
fn := fn-1 + fn-2 (n >= 3)
f1 := 1
f2 := 2
fn := fn-1 + fn-2 (n >= 3)
Given two numbers a and b, calculate how many Fibonacci numbers are in the range [a, b].
Input
The input contains several test cases. Each test case consists of two
non-negative integer numbers a and b. Input is terminated by a = b = 0.
Otherwise, a <= b <= 10^100. The numbers a and b are given with no
superfluous leading zeros.
non-negative integer numbers a and b. Input is terminated by a = b = 0.
Otherwise, a <= b <= 10^100. The numbers a and b are given with no
superfluous leading zeros.
Output
For each test case output on a single line the number of Fibonacci numbers fi with a <= fi <= b.
Sample Input
10 100
1234567890 9876543210
0 0
0 0
Sample Output
5
4
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int a[][];
char str[][];
int main()
{
char m[],n[];
int i,j,sum;
memset(a,,sizeof(a));//大数斐波那契,主要是了解思想
a[][]=;
a[][]=;
a[][]=;
for (i=;i<=;i++)
{
for (j=;j<=;j++)
{
a[i][j]=a[i][j]+a[i-][j]+a[i-][j];
if (a[i][j]>)
{
a[i][j+]=a[i][j]/;
a[i][j]=a[i][j]%;
}
}
}
int flag=,k;
for(int i=;i<=;i++)
{
flag=;
k=;
for(int j=;j>=;j--)
{
if(flag||a[i][j])
{
flag=;
str[i][k]=a[i][j]+'';
k++;
}
}
str[i][k]='\0';
}
flag=;
/*for(i=100;i>=0;i--)
{
if(flag||a[100][i])
{
flag=1;
printf("%d",a[100][i]);
}
}*/
/*for(int i=40;i<=50;i++)
printf("%s\n",str[i]);*/
int l1,l2;
while(scanf("%s%s",n,m)!=EOF)
{
sum=;
l1=strlen(n);
l2=strlen(m);
if(n[]==''&&m[]=='') break;
for(int i=;i<=;i++)
{
if((strlen(str[i])>l1&&strlen(str[i])<l2))//如果这个数的长度在范围之(a,b)长度之间,则这个数一定属于(a,b);
{
sum++;
}
else if(l1==l2&&strlen(str[i])==l1&&strcmp(str[i],n)>=&&strlen(str[i])==l2&&strcmp(str[i],m)<=)//如果(a,b)两个数长度一样,则比较他们在字典中的大小。
{
sum++;
}
else if(l1!=l2&&strlen(str[i])==l1&&strcmp(str[i],n)>=)
{
sum++;
}
else if(l1!=l2&&strlen(str[i])==l2&&strcmp(str[i],m)<=)
{ sum++;
}
}
printf("%d\n",sum);;
}
return ;
}