文章目录
HA集群安装部署
1 运行环境
1软件环境
三个节点
OS:64位RHEL5及以上或者64位CentOS6.0及以上
JVM:预装64位JDK 1.8及以上版本
2 安装准备
2.1准备虚拟机
准备三个节点的虚拟机
2.2 修改主机名
在各个节点执行以下操作来修改主机名,使集群下的主机有格式一个统一的主机名,以便后续的操作和维护。
修改主机名
vi /etc/sysconfig/network
192.168.xx.210 ha01
(其它俩台分别修改自己的ha02 ha03)
修改host映射:
vi /etc/hosts
192.168.xx.210 ha01
192.168.xx.220 ha02
192.168.xx.230 ha03
2.3 关闭防火墙
service iptables stop
chkconfig iptables off
2.4 配置时间同步
yum –y install ntpdate
ntpdate pool.ntp.org
2.5 配置ssh免秘登录
yum –y install openssh-clients
ssh-keygen –t rsa
ssh-copy-id ha0x(记得给自己和其它俩台都要发)
2.6 安装jdk
自己安装(记得配置环境变量)
3 安装其他组件
3.1 安装zookeeper
注:以下所有安装默认是在ha01上执行!
解压软件包
将zookeeper-3.4.6.tar.gz 解压缩,
tar -zxvf zookeeper-3.4.6.tar.gz –C /usr/local/
修改配置文件(在ha01执行)
修改Zookeeper配置文件/usr/local/zookeeper3.4.6/conf/zoo_sample.cfg重名为zoo.cfg。
mv zoo_sample.cfg zoo.cfg
修改zoo.cfg,添加如下内容
server.1=ha01:2888:3888
server.2=ha02:2888:3888
server.3=ha03:2888:3888
创建相关目录
创建/tmp/zookeeper目录,并在此目录下创建myid文件。
mkdir /tmp/zookeeper
cd /tmp/zookeeper
vi myid
在文件中写入数字
1
分发zookeeper软件包
scp -r /usr/local/zookeeper-3.4.6 ha02:/usr/local
scp -r /usr/local/zookeeper-3.4.6 ha03:/usr/local
修改myid文件
到ha2与ha3上重复三步骤,分别把myid修改为2,3
启动Zookeeper
在ha01,ha02,ha03上执行
zkServer.sh start
查看进程QuorumPeerMain是否启动
jps
查看zookeeper状态
zkServer.sh status
出现lead,fllower,fllower为正常
注意:先把hadoop集群正常模式配置一遍,先正常启动后,在
去配制高可用
3.2 安装高可用hadoop
hadoop部分的配置分为两部分hdfs和yarn。
3.2.1 HDFS
修改配置文件
修改core-site.xml(如果文件不存在,但是core-site.xml.template文件存在,则先修改文件名,执行mv core-site.xml.template core-site.xml)
vi /usr /local/hadoop-2.7.3/etc/hadoop/core-site.xml
修改为以下内容:
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://beh</value>
<final>false</final>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/usr/local/hadoopdata</value>
<final>false</final>
</property>
<property>
<name>ha.zookeeper.quorum</name>
<value>ha01:2181,ha02:2181,ha03:2181</value>
<final>false</final>
</property>
</configuration>
修改hdfs-site.xml
vi /usr/local/hadoop-2.7.3/etc/hadoop/hdfs-site.xml
修改为以下内容:
<configuration>
<property>
<name>dfs.nameservices</name>
<value>beh</value>
<final>false</final>
</property>
<property>
<name>dfs.ha.namenodes.beh</name>
<value>nn1,nn2</value>
<final>false</final>
</property>
<property>
<name>dfs.namenode.rpc-address.beh.nn1</name>
<value>ha01:9000</value>
<final>false</final>
</property>
<property>
<name>dfs.namenode.http-address.beh.nn1</name>
<value>ha01:50070</value>
<final>false</final>
</property>
<property>
<name>dfs.namenode.rpc-address.beh.nn2</name>
<value>ha02:9000</value>
<final>false</final>
</property>
<property>
<name>dfs.namenode.http-address.beh.nn2</name>
<value>ha02:50070</value>
<final>false</final>
</property>
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://ha01:8485;ha02:8485;ha03:8485/beh</value>
<final>false</final>
</property>
<property>
<name>dfs.ha.automatic-failover.enabled.beh</name>
<value>true</value>
<final>false</final>
</property>
<property>
<name>dfs.client.failover.proxy.provider.beh</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
<final>false</final>
</property>
<property>
<name>dfs.journalnode.edits .dir</name>
<value>/usr/local/metadata/journal</value>
<final>false</final>
</property>
<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence
shell(/bin/true)
</value>
<final>false</final>
</property>
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/usr/local/.ssh/id_rsa</value>
<final>true</final>
</property>
<property>
<name>dfs.replication</name>
<value>2</value>
<final>false</final>
</property>
<configuration>
修改slaves
vi /usr/local/hadoop-2.7.3/etc/hadoop/slaves
修改为以下内容:
ha02
ha03
3.2.2 YARN
修改mapred-site.xml
vi /usr/local/hadoop2.7.3/etc/hadoop/mapred-site.xml
修改为以下内容:
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>mapreduce.jobhistory.address</name>
<value>ha02:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>ha03:19888</value>
</property>
<property>
<name>yarn.app.mapreduce.am.staging-dir</name>
<value>/usr/local/metadata/hadoop-yarn/staging</value>
</property>
</configuration>
修改yarn-site.xml
vi /usr/local/hadoop2.7.3/etc/hadoop/yarn-site.xml
修改为以下内容:
<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
<name>yarn.nodemanager.local-dirs</name>
<value>/usr/local/metadata/yarn</value>
</property>
<property>
<name>yarn.nodemanager.log-dirs</name>
<value>/usr/local/logs/yarn/userlogs</value>
</property>
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
<property>
<description>Where to aggregate logs</description>
<name>yarn.nodemanager.remote-app-log-dir</name>
<value>hdfs://beh/var/log/hadoop-yarn/apps</value>
</property>
<!-- Resource Manager Configs -->
<property>
<name>yarn.resourcemanager.connect.retry-interval.ms</name>
<value>2000</value>
</property>
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>beh</value>
</property>
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<!--RM1 RM2 is different-->
<property>
<name>yarn.resourcemanager.ha.id</name>
<value>rm1</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value>
</property>
<property>
<name>yarn.resourcemanager.recovery.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.store.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>
<property>
<name>yarn.resourcemanager.zk.state-store.address</name>
<value>ha01:2181,ha02:2181,ha03:2181</value>
</property>
<property>
<name>yarn.app.mapreduce.am.scheduler.connection.wait.interval-ms</name>
<value>5000</value>
</property>
<!-- RM1 configs -->
<property>
<name>yarn.resourcemanager.address.rm1</name>
<value>ha01:23140</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address.rm1</name>
<value>ha01:23130</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.https.address.rm1</name>
<value>ha01:23189</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm1</name>
<value>ha01:23188</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm1</name>
<value>ha01:23125</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address.rm1</name>
<value>ha01:23141</value>
</property>
<!-- RM2 configs -->
<property>
<name>yarn.resourcemanager.address.rm2</name>
<value>ha02:23140</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address.rm2</name>
<value>ha02:23130</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.https.address.rm2</name>
<value>ha02:23189</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm2</name>
<value>ha02:23188</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm2</name>
<value>ha02:23125</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address.rm2</name>
<value>ha02:23141</value>
</property>
<!-- Node Manager Configs -->
<property>
<name>mapreduce.shuffle.port</name>
<value>23080</value>
</property>
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>ha01:2181,ha02:2181,ha03:2181</value>
</property>
</configuration>
修改环境变量
vim /usr/local/hadoop-2.7.3/etc/hadoop/hadoop-env.sh
vim /usr/local/hadoop-2.7.3/etc/hadoop/yarn-env.sh
修改为以下内容:
export JAVA_HOME=/usr/local/jdk1.8.0_102
3.2.3 分发配置文件
scp -r /usr/local/hadoop2.7.3 ha02:/usr/local
scp -r /usr/local/hadoop2.7.3 ha03:/usr/local
注:将以上配置复制到所有节点
3.2.4 启动HDFS
启动journalnode(进程名:JournalNode)
sbin/hadoop-daemon.sh start journalnode
格式化zookeeper,在ha01上执行
hdfs zkfc -formatZK
对ha01节点进行格式化和启动启动namenode(进程名:NameNode):
hdfs namenode -format
sbin/hadoop-daemon.sh start namenode
对ha02节点进行格式化和启动
hdfs namenode -bootstrapStandby
sbin/hadoop-daemon.sh start namenode
在ha01和ha02上启动zkfc服务(zkfc服务进程名:DFSZKFailoverController):此时ha01和ha02就会有一个节点变为active状态
sbin/hadoop-daemon.sh start zkfc
启动datanode(进程名:DataNode):在ha01上执行
sbin/hadoop-daemons.sh start datanode
3.2.5 验证是否成功
打开浏览器,访问 hadoop1:50070 以及 hadoop2:50070,你将会看到两个namenode一个是active而另一个是standby。
然后kill掉其中active的namenode进程,另一个standby的naemnode将会自动转换为active状态
hadoop001:50070
hadoop002:50070
3.2.6 启动yarn
在hadoop1上启动(此脚本将会启动hadoop1上的resourcemanager及所有的nodemanager)
$HADOOP_HOME/sbin/start-yarn.sh
在hadoop2上启动resourcemanagerl
$HADOOP_HOME/sbin/yarn-daemon.sh start resourcemanager
3.2.7 验证是否配置成功
打开浏览器,访问hadoop1:23188或者hadoop2:23188,只有active的会打开如下界面,standby的那个不会看到页面。
然后kill掉active的resourcemanager另一个将会变为active的,说明resourcemanager HA是成功的