这个问题已经在这里有了答案: > Replacing column values in a pandas DataFrame 10个
我有一个名为df_base的数据框,看起来像这样.如您所见,有一列名为“性别”的性别.我想将这些值分别映射到0和1.
+---+-------------+----------+--------+---------------------------------------------------+--------+-----+-------+-------+------------------+---------+-------+----------+
| | PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked |
+---+-------------+----------+--------+---------------------------------------------------+--------+-----+-------+-------+------------------+---------+-------+----------+
| 0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22 | 1 | 0 | A/5 21171 | 7.25 | NaN | S |
| 1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
| 2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26 | 0 | 0 | STON/O2. 3101282 | 7.925 | NaN | S |
| 3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35 | 1 | 0 | 113803 | 53.1 | C123 | S |
| 4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35 | 0 | 0 | 373450 | 8.05 | NaN | S |
+---+-------------+----------+--------+---------------------------------------------------+--------+-----+-------+-------+------------------+---------+-------+----------+
我在*上看到了一些方法,但是我想知道执行以下映射最有效的方法是:
+---------+---------+
| Old Sex | New Sex |
+---------+---------+
| male | 0 |
| female | 1 |
| female | 1 |
| female | 1 |
| male | 0 |
+---------+---------+
我正在使用这个:
df_base [ ‘性别’].代替([ ‘男性’, ‘女’],[0,1],就地=真)
…但是我不禁觉得这有点伪劣.有更好的方法吗?还使用了.loc但它在Dataframe的行周围循环,所以效率较低,对吧?
解决方法:
我认为,如果“性别”列中仅存在男性和女性,则按字典最好/更快地使用map
:
df_base['Sex'] = df_base['Sex'].map(dict(zip(['male','female'],[0,1]))
像什么一样:
df_base['Sex'] = df_base['Sex'].map({'male': 0,'female': 1})
如果仅存在女性和男性值,则将布尔值掩码强制转换为整数True / False到1,0:
df_base['Sex'] = (df_base['Sex'] == 'female').astype(int)
性能:
np.random.seed(2019)
import perfplot
def ma(df):
df = df.copy()
df['Sex_new'] = df['Sex'].map({'male': 0,'female': 1})
return df
def rep1(df):
df = df.copy()
df['Sex'] = df['Sex'].replace(['male','female'],[0,1])
return df
def nwhere(df):
df = df.copy()
df['Sex_new'] = np.where(df['Sex'] == 'male', 0, 1)
return df
def mask1(df):
df = df.copy()
df['Sex_new'] = (df['Sex'] == 'female').astype(int)
return df
def mask2(df):
df = df.copy()
df['Sex_new'] = (df['Sex'].values == 'female').astype(int)
return df
def make_df(n):
df = pd.DataFrame({'Sex': np.random.choice(['male','female'], size=n)})
return df
perfplot.show(
setup=make_df,
kernels=[ma, rep1, nwhere, mask1, mask2],
n_range=[2**k for k in range(2, 18)],
logx=True,
logy=True,
equality_check=False, # rows may appear in different order
xlabel='len(df)')
结论:
如果仅替换2个值是最慢的替换,则numpy.where,map和mask相似.为了提高性能,请使用numpy数组与.values进行比较.
同样,所有数据都取决于数据,因此最好对真实数据进行测试.