pandas相关性分析

DataFrame.corr(method='pearson', min_periods=1)

参数说明:

method:可选值为{‘pearson’, ‘kendall’, ‘spearman’}

               pearson:Pearson相关系数来衡量两个数据集合是否在一条线上面,即针对线性数据的相关系数计算,针对非线性                                           数据便会有误差。

                kendall:用于反映分类变量相关性的指标,即针对无序序列的相关系数,非正太分布的数据

                spearman:非线性的,非正太分析的数据的相关系数

min_periods:样本最少的数据量

返回值:各类型之间的相关系数DataFrame表格。

为区分不同参数之间的区别,我们实验如下:

from pandas import DataFrame
import pandas as pd
x=[a for a in range(100)]
#构造一元二次方程,非线性关系
def y_x(x):
    return 2*x**2+4
y=[y_x(i) for i in x]
 
data=DataFrame({'x':x,'y':y})
 
#查看下data的数据结构
data.head()
Out[34]: 
   x   y
0  0   4
1  1   6
2  2  12
3  3  22
4  4  36
 
data.corr()
Out[35]: 
          x         y
x  1.000000  0.967736
y  0.967736  1.000000
 
data.corr(method='spearman')
Out[36]: 
     x    y
x  1.0  1.0
y  1.0  1.0
 
data.corr(method='kendall')
Out[37]: 
     x    y
x  1.0  1.0
y  1.0  1.0

因为y经由函数构造出来,x和y的相关系数为1,但从实验结构可知pearson系数,针对非线性数据有一定的误差。

转自:https://blog.csdn.net/walking_visitor/article/details/85128461

上一篇:数学建模(NO.5总体皮尔逊Pearson相关系数)


下一篇:python转换8进制为字符串