在Programming Collective Intelligence这本书中,我发现了以下函数来计算PageRank:
def calculatepagerank(self,iterations=20):
# clear out the current PageRank tables
self.con.execute("drop table if exists pagerank")
self.con.execute("create table pagerank(urlid primary key,score)")
self.con.execute("create index prankidx on pagerank(urlid)")
# initialize every url with a PageRank of 1.0
self.con.execute("insert into pagerank select rowid,1.0 from urllist")
self.dbcommit()
for i in range(iterations):
print "Iteration %d" % i
for (urlid,) in self.con.execute("select rowid from urllist"):
pr=0.15
# Loop through all the pages that link to this one
for (linker,) in self.con.execute("select distinct fromid from link where toid=%d" % urlid):
# Get the PageRank of the linker
linkingpr=self.con.execute("select score from pagerank where urlid=%d" % linker).fetchone()[0]
# Get the total number of links from the linker
linkingcount=self.con.execute("select count(*) from link where fromid=%d" % linker).fetchone()[0]
pr+=0.85*(linkingpr/linkingcount)
self.con.execute("update pagerank set score=%f where urlid=%d" % (pr,urlid))
self.dbcommit()
但是,由于每次迭代中都有所有SQL查询,因此此功能非常慢
>>> import cProfile
>>> cProfile.run("crawler.calculatepagerank()")
2262510 function calls in 136.006 CPU seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 136.006 136.006 <string>:1(<module>)
1 20.826 20.826 136.006 136.006 searchengine.py:179(calculatepagerank)
21 0.000 0.000 0.528 0.025 searchengine.py:27(dbcommit)
21 0.528 0.025 0.528 0.025 {method 'commit' of 'sqlite3.Connecti
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler
1339864 112.602 0.000 112.602 0.000 {method 'execute' of 'sqlite3.Connec
922600 2.050 0.000 2.050 0.000 {method 'fetchone' of 'sqlite3.Cursor'
1 0.000 0.000 0.000 0.000 {range}
因此,我优化了功能并提出了以下建议:
def calculatepagerank2(self,iterations=20):
# clear out the current PageRank tables
self.con.execute("drop table if exists pagerank")
self.con.execute("create table pagerank(urlid primary key,score)")
self.con.execute("create index prankidx on pagerank(urlid)")
# initialize every url with a PageRank of 1.0
self.con.execute("insert into pagerank select rowid,1.0 from urllist")
self.dbcommit()
inlinks={}
numoutlinks={}
pagerank={}
for (urlid,) in self.con.execute("select rowid from urllist"):
inlinks[urlid]=[]
numoutlinks[urlid]=0
# Initialize pagerank vector with 1.0
pagerank[urlid]=1.0
# Loop through all the pages that link to this one
for (inlink,) in self.con.execute("select distinct fromid from link where toid=%d" % urlid):
inlinks[urlid].append(inlink)
# get number of outgoing links from a page
numoutlinks[urlid]=self.con.execute("select count(*) from link where fromid=%d" % urlid).fetchone()[0]
for i in range(iterations):
print "Iteration %d" % i
for urlid in pagerank:
pr=0.15
for link in inlinks[urlid]:
linkpr=pagerank[link]
linkcount=numoutlinks[link]
pr+=0.85*(linkpr/linkcount)
pagerank[urlid]=pr
for urlid in pagerank:
self.con.execute("update pagerank set score=%f where urlid=%d" % (pagerank[urlid],urlid))
self.dbcommit()
此函数快很多倍(但对所有临时词典使用更多的内存),因为它避免了每次迭代中不必要的SQL查询:
>>> cProfile.run("crawler.calculatepagerank2()")
90070 function calls in 3.527 CPU seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.004 0.004 3.527 3.527 <string>:1(<module>)
1 1.154 1.154 3.523 3.523 searchengine.py:207(calculatepagerank2
2 0.000 0.000 0.058 0.029 searchengine.py:27(dbcommit)
23065 0.013 0.000 0.013 0.000 {method 'append' of 'list' objects}
2 0.058 0.029 0.058 0.029 {method 'commit' of 'sqlite3.Connectio
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler
43932 2.261 0.000 2.261 0.000 {method 'execute' of 'sqlite3.Connecti
23065 0.037 0.000 0.037 0.000 {method 'fetchone' of 'sqlite3.Cursor'
1 0.000 0.000 0.000 0.000 {range}
但是是否有可能进一步减少SQL查询的数量以进一步提高功能的速度?
更新:修复了calculatepagerank2()中的缩进.
解决方法:
如果您有一个非常大的数据库(例如,WWW中的#个记录〜#个页面),以类似于书中建议的方式使用该数据库,那是因为您将无法将所有数据保留在内存中.
如果您的数据集足够小,则可以通过不进行太多查询来(可能)改善第二个版本.尝试用以下内容替换第一个循环:
for urlid, in self.con.execute('select rowid from urllist'):
inlinks[urlid] = []
numoutlinks[urlid] = 0
pagerank[urlid] = 1.0
for src, dest in self.con.execute('select fromid, toid from link'):
inlinks[dest].append(src)
numoutlinks[src] += 1
这个版本只执行2个查询,而不是O(n ^ 2)个查询.