题目描述
For a string \(x\) ,Bobo define \(x^{\infty}\) =xxx,,,which is x repeats for infinite times ,resulting in a string of infinite length. Bobo has two strings a and b. Find out the result comparing \(a^{\infty}\) and \(b^{\infty}\) in lexicographical order. You can refer the wiki page further information of Lexicographical Order.
输入描述
The input consist of several test cases terminated by end - of - file .
The first line of each test cases contains a string a,and the second line contains a string b
- 1≤|a|, |b|≤\(10^{5}\)
- a, b consists of lower case letters
- The total length of input strings does not exceed 2 x \(10^{6}\)
输出描述
For each test cases , print "=" ,if \(a^{\infty}\) = \(b^{\infty}\) , otherwise, print "<",if \(a^{\infty}\) < \(b^{\infty}\) ,or ">",if \(a^{\infty}\) > \(b^{\infty}\)
示例一
输入
aa
b
zzz
zz
aba
abaa
输出
<
=
>
题解
#include <cstdio>
#include <cstring>
static const int N = 100000;
//求最大公约数
template <typename T>
T gcd(T a, T b){
return b ? gcd(b, a % b) : a;
}
int main() {
//存放两个字符串
static char a[N + 1], b[N + 1];
//读到EOF为止
while (scanf("%s%s", a, b) == 2) {
//取出两个串的长度
int alen = strlen(a);
int blen = strlen(b);
//如果超出maxlen还相等,那么这两个字符串相等
int maxlen = alen + blen - gcd(alen, blen);
char result = '=';
//开始遍历,只要出现字符不相等的情况,就跳出,并输出大于小于号
for (int i = 0; i < maxlen && result == '='; ++i) {
char ai = a[i % alen];
char bi = b[i % blen];
if (ai != bi) {
result = ai < bi ? '<' : '>';
}
}
//输出结果
printf("%c\n", result);
}
}
关于周期性引理,定理内容:
假设一个字符串 有循环节 和 并且满足 ,那么 也是一个循环节。
设两个字符串为a,b在本题的标程中,每两个字符串的匹配次数是\(|a|+|b|-gcd(a,b)\),如果超出这个次数,就不用匹配了,直接认定两个字符串相等。但我觉得,这样有些不妥当,因为这个定理中说,满足\(p+q≤|S|+gcd(p,q)\)的话,那么\(gcd(p,q)\)是一个循环节,也就是说,\(p+q≤|S|+gcd(p,q)\)并不恒成立,那么为什么要以这个为匹配次数最大值?
这道题数据太水,直接把字符串首尾相接,也就是a+=a,b+=b,然后循环次数变成两个字符串长度最大值,然后直接匹配就行了。