1. Undirected graphical models(Markov random fields)
-
节点表示随机变量,边表示与节点相关的势函数
px(x)∝φ12(x1,x2)φ13(x1,x3)φ25(x2,x5)φ345(x3,x4,x5) -
clique:全连接的节点集合
-
maximal clique:不是其他 clique 的真子集
**Theorem (Hammersley-Clifford) **: A strictly positive distribution px(x)>0 satisfies the graph separation property of undirected graphical models if and only if it can be represented in the factorized form
px(x)∝A∈C∏ψxA(xA)
- conditional independence:xA1⊥xA2∣xA3
2. Directed graphical models(Bayesian network)
-
节点表示随机变量,有向边表示条件关系
px1,…,xn=px1(x1)px2∣×1(x2∣x1)⋯pxn∣x1,…,xn−1(xn∣x1,…,xn−1) -
Directed acyclic graphs (DAG)
-
Fully-connected DAG
-
conditional independence:xA1⊥xA2∣xA3
-
Bayes ball algorithm
- primary shade: A3 中的节点
- secondary shade: primary shade 的节点,以及 secondary shade 的父节点
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8UKlSiFL-1580777349196)(C:\Users\1\AppData\Roaming\Typora\typora-user-images\1574319393095.png)]
3. Factor graph
-
有 variable nodes 和 factor nodes,是 bipartitie graph
px(x)∝j∏fj(xfj) -
因子图比 directed graph 和 undirected graph 的表示能力更强,比如 p(x)=Z1ϕ12(x1,x2)ϕ13(x1,x3)ϕ23(x2,x3)
-
因子图可以与 DAG 相互转化(根据 x1,...,xn 依次根据 conditional independence 决定父节点),DAG又可以转化为 undirected graph
4. Measuring goodness of graphical representations
- 给定分布 D 和图 G,他们之间没必要有联系
- CI(D):the set of conditional independencies satisfied by D
- CI(G): the set of all conditional independencies implied by G
- I-map:CI(G)⊂CI(D)
- D-map: :CI(G)⊃CI(D)
- P-map:CI(G)=CI(D)
- minimal I-map: Aminimal I-mapisanI-mapwiththepropertythatremovinganysingle edge would cause the graph to no longer be an I-map.
Remarks: G 中去掉一个边会使该 map 中有更多的 conditional independence,也即 CI(G) 更大,更不易满足 I-map条件。I-map 可以表示分布 D,但是 D-map 不能