统计推断(九) Graphical models

1. Undirected graphical models(Markov random fields)

  • 节点表示随机变量,边表示与节点相关的势函数
    px(x)φ12(x1,x2)φ13(x1,x3)φ25(x2,x5)φ345(x3,x4,x5) p_{\mathbf{x}}(\mathbf{x}) \propto \varphi_{12}\left(x_{1}, x_{2}\right) \varphi_{13}\left(x_{1}, x_{3}\right) \varphi_{25}\left(x_{2}, x_{5}\right) \varphi_{345}\left(x_{3}, x_{4}, x_{5}\right) px​(x)∝φ12​(x1​,x2​)φ13​(x1​,x3​)φ25​(x2​,x5​)φ345​(x3​,x4​,x5​)
    统计推断(九) Graphical models

  • clique:全连接的节点集合

  • maximal clique:不是其他 clique 的真子集

**Theorem (Hammersley-Clifford) **: A strictly positive distribution px(x)>0p_{\mathsf{x}}(\mathbf{x})>0px​(x)>0 satisfies the graph separation property of undirected graphical models if and only if it can be represented in the factorized form
px(x)ACψxA(xA) p_{\mathsf{x}}(\mathbf{x}) \propto \prod_{\mathcal{A} \in \mathcal{C}} \psi_{\mathbf{x}_{\mathcal{A}}}\left(\mathbf{x}_{\mathcal{A}}\right) px​(x)∝A∈C∏​ψxA​​(xA​)

  • conditional independencexA1xA2xA3\mathbf{x}_{\mathcal{A}_{1}} \perp \mathbf{x}_{\mathcal{A}_{2}} | \mathbf{x}_{\mathcal{A}_{3}}xA1​​⊥xA2​​∣xA3​​

2. Directed graphical models(Bayesian network)

  • 节点表示随机变量,有向边表示条件关系
    px1,,xn=px1(x1)px2×1(x2x1)pxnx1,,xn1(xnx1,,xn1) p_{\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}}=p_{\mathrm{x}_{1}}\left(x_{1}\right) p_{\mathrm{x}_{2} | \times_{1}}\left(x_{2} | x_{1}\right) \cdots p_{\mathrm{x}_{n} | x_{1}, \ldots, x_{n-1}}\left(x_{n} | x_{1}, \ldots, x_{n-1}\right) px1​,…,xn​​=px1​​(x1​)px2​∣×1​​(x2​∣x1​)⋯pxn​∣x1​,…,xn−1​​(xn​∣x1​,…,xn−1​)
    统计推断(九) Graphical models

  • Directed acyclic graphs (DAG)

  • Fully-connected DAG

  • conditional independencexA1xA2xA3\mathbf{x}_{\mathcal{A}_{1}} \perp \mathbf{x}_{\mathcal{A}_{2}} | \mathbf{x}_{\mathcal{A}_{3}}xA1​​⊥xA2​​∣xA3​​

    统计推断(九) Graphical models

  • Bayes ball algorithm

    • primary shade: A3\mathcal{A_3}A3​ 中的节点
    • secondary shade: primary shade 的节点,以及 secondary shade 的父节点

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8UKlSiFL-1580777349196)(C:\Users\1\AppData\Roaming\Typora\typora-user-images\1574319393095.png)]

3. Factor graph

  • 有 variable nodes 和 factor nodes,是 bipartitie graph
    px(x)jfj(xfj) p_{\mathbf{x}}(\mathbf{x}) \propto \prod_{j} f_{j}\left(\mathbf{x}_{f_{j}}\right) px​(x)∝j∏​fj​(xfj​​)
    统计推断(九) Graphical models

  • 因子图比 directed graph 和 undirected graph 的表示能力更强,比如 p(x)=1Zϕ12(x1,x2)ϕ13(x1,x3)ϕ23(x2,x3)p(x)=\frac{1}{Z}\phi_{12}(x_1,x_2)\phi_{13}(x_1,x_3)\phi_{23}(x_2,x_3)p(x)=Z1​ϕ12​(x1​,x2​)ϕ13​(x1​,x3​)ϕ23​(x2​,x3​)

  • 因子图可以与 DAG 相互转化(根据 x1,...,xnx_1,...,x_nx1​,...,xn​ 依次根据 conditional independence 决定父节点),DAG又可以转化为 undirected graph

4. Measuring goodness of graphical representations

  • 给定分布 D 和图 G,他们之间没必要有联系
  • CI(D)CI(D)CI(D):the set of conditional independencies satisfied by DDD
  • CI(G)CI(G)CI(G): the set of all conditional independencies implied by GGG
  • I-mapCI(G)CI(D)C I(\mathcal{G}) \subset C I(D)CI(G)⊂CI(D)
  • D-map: :CI(G)CI(D)C I(\mathcal{G}) \supset C I(D)CI(G)⊃CI(D)
  • P-mapCI(G)=CI(D)C I(\mathcal{G}) = C I(D)CI(G)=CI(D)
  • minimal I-map: Aminimal I-mapisanI-mapwiththepropertythatremovinganysingle edge would cause the graph to no longer be an I-map.
    Remarks: G 中去掉一个边会使该 map 中有更多的 conditional independence,也即 CI(G)CI(G)CI(G) 更大,更不易满足 I-map条件。I-map 可以表示分布 D,但是 D-map 不能
统计推断(九) Graphical models统计推断(九) Graphical models Bonennult 发布了37 篇原创文章 · 获赞 27 · 访问量 2万+ 私信 关注
上一篇:全面理解主成分分析(PCA)和MNIST数据集的Python降维实现


下一篇:Gronwall's Lemma