Luogu3793 由乃救爷爷 分块、ST表

传送门


因为昨天写暴力写挂在UOJ上用快排惨遭卡常,所以今天准备写一个卡常题消遣消遣,然后时间又垫底了QAQ

这道题显然需要支持一个\(O(N)\)预处理\(O(1)\)查询的ST表,显然普通的ST表是做不到的,因为预处理的时间太长了

于是分块优化掉ST表的预处理

约定\(L_i,R_i\)表示第\(i\)个块的左端点和右端点,\(be_i\)表示第\(i\)个数所在的块

对于每一个位置\(i\)预处理\(L_{be_i}\)到\(i\)的所有数的最大值\(lmax_i\)以及\(i\)到\(R_{be_i}\)的所有数的最大值\(rmax_i\);预处理块最大值的ST表

对于一个询问\((l,r)\),如果\(be_i \neq be_r\)查询\(rmax_l , lmax_r\)以及\(be_l+1\)到\(be_r-1\)的所有块的最大值,三者取\(max\);如果\(be_l = be_r\)就暴力

考虑复杂度,设块长为\(S\),预处理复杂度瓶颈为ST表复杂度\(O(\frac{N}{S}log\frac{N}{S})\);询问复杂度上,如果\(be_l \neq be_r\)为\(O(1)\),否则为\(O(S)\)。因为数据随机,出现\(be_l = be_r\)的概率为\(\frac{S}{N}\),所以最坏查询复杂度为\(O(S^2)\),总复杂度为\(O(\frac{N}{S}log\frac{N}{S} + S^2)\)

差不多当\(S = \sqrt[3]{NlogN}\)的时候有最优复杂度,但是因为数据随机所以块长开大一点也没关系

然后可能需要一些奇怪的常数优化比如把max define掉之类的

#include<bits/stdc++.h>
using namespace std;

namespace GenHelper
{
    unsigned z1,z2,z3,z4,b;
    unsigned rand_()
    {
    b=((z1<<6)^z1)>>13;
    z1=((z1&4294967294U)<<18)^b;
    b=((z2<<2)^z2)>>27;
    z2=((z2&4294967288U)<<2)^b;
    b=((z3<<13)^z3)>>21;
    z3=((z3&4294967280U)<<7)^b;
    b=((z4<<3)^z4)>>12;
    z4=((z4&4294967168U)<<13)^b;
    return (z1^z2^z3^z4);
    }
}
void srand(unsigned x)
{
    using namespace GenHelper;
    z1=x; z2=(~x)^0x233333333U; z3=x^0x1234598766U; z4=(~x)+51;
}
int read()
{
    using namespace GenHelper;
    int a=rand_()&32767;
    int b=rand_()&32767;
    return a*32768+b;
}

const int MAXN = 2e7 + 7;
unsigned int arr[MAXN] , maxN1[MAXN] , maxN2[MAXN] , ST[15][26000] , logg2[26000];
unsigned int N , M , S , T , cnt;

#define cmp(a , b) ((a) > (b) ? (a) : (b))

inline unsigned int qST(int x , int y){
    if(x > y)
        return 0;
    int t = logg2[y - x + 1];
    return cmp(ST[t][x] , ST[t][y - (1 << t) + 1]);
}

int main(){
    cin >> N >> M >> S;
    srand(S);
    T = pow(N * log2(N) , 1.0/3);
    cnt = N / T + (N % T ? 1 : 0);
    for(int i = 1 ; i <= N ; ++i){
        arr[i] = read();
        maxN2[i] = arr[i];
        if(i % T != 1)
            maxN2[i] = cmp(maxN2[i] , maxN2[i - 1]);
    }
    for(int i = N ; i ; --i){
        maxN1[i] = arr[i];
        if(i % T)
            maxN1[i] = cmp(maxN1[i] , maxN1[i + 1]);
        if(i % T == 1)
            ST[0][i / T + 1] = maxN1[i];
    }
    for(int i = 2 ; i <= cnt ; ++i)
        logg2[i] = logg2[i >> 1] + 1;
    for(int i = 1 ; 1 << i <= cnt ; ++i)
        for(int j = 1 ; j + (1 << i) - 1 <= cnt ; ++j)
            ST[i][j] = cmp(ST[i - 1][j] , ST[i - 1][j + (1 << (i - 1))]);
    unsigned long long sum = 0;
    while(M--){
        int l = read() % N + 1 , r = read() % N + 1;
        if(l > r)
            swap(l , r);
        if((l - 1) / T == (r - 1) / T){
            unsigned int ans = 0;
            for(int i = l ; i <= r ; ++i)
                ans = cmp(ans , arr[i]);
            sum += ans;
        }
        else
            sum += cmp(cmp(maxN1[l] , maxN2[r]) , qST((l - 1) / T + 2 , (r - 1) / T));
    }
    cout << sum;
    return 0;
}
上一篇:ajax post 跨域


下一篇:【转载】ASP.NET Core 依赖注入