LearnOpenGL09——材质

转自
https://blog.csdn.net/qq_36696486/article/details/104329131
https://learnopengl-cn.github.io/02%20Lighting/03%20Materials/
在现实世界里,每个物体会对光产生不同的反应。比如说,钢看起来通常会比陶瓷花瓶更闪闪发光,木头箱子也不会像钢制箱子那样对光产生很强的反射。每个物体对镜面高光也有不同的反应。有些物体反射光的时候不会有太多的散射(Scatter),因而产生一个较小的高光点,而有些物体则会散射很多,产生一个有着更大半径的高光点。如果我们想要在OpenGL中模拟多种类型的物体,我们必须为每个物体分别定义一个材质(Material)属性。
在冯氏光照模型的基础上,我们将冯氏光照模型的三个组成成分再加上
反光度
封装成为一个结构体,便于对光照参数进行统一管理,这个结构体便是所谓的材质
材质可以简单理解为一个参数集合体,来控制物体的基本属性。在片段着色器中,我们创建一个结构体(Struct)来储存物体的材质属性。我们也可以把它们储存为独立的uniform值,但是作为一个结构体来储存会更有条理一些。

#version 330 core
struct Material {
    vec3 ambient;
    vec3 diffuse;
    vec3 specular;
    float shininess;
}; 

uniform Material material;

示例程序:

示例程序在冯氏光照模型的基础上进行改动:
顶点着色器

#version 330 core
layout(location = 0) in vec3 aPos;
layout(location = 1) in vec3 aNormal;

out vec3 FragPos;
//光照法向量
out vec3 Normal;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main(){
	FragPos = vec3(model * vec4(aPos,1.0));
	Normal = mat3(transpose(inverse(model)))*aNormal;
	
	gl_Position = projection * view * vec4(FragPos,1.0);

片元着色器

#version 330 core
out vec4 FragColor;

in vec3 Normal;
in vec3 FragPos;

uniform vec3 viewPos;
//物体颜色,对物体的pong着色操作在片元着色器中实现
uniform vec3 objectColor;

struct Light{
	vec3 lightPos;
	vec3 lightColor;
	float shininess;
};

//材质
uniform Light material;

void main(){
	// ambient
    float ambientStrength = 0.1;
    vec3 ambient = ambientStrength * material.lightColor;

	 // diffuse 
    vec3 norm = normalize(Normal);
    vec3 lightDir = normalize(material.lightPos - FragPos);
    float diff = max(dot(norm, lightDir), 0.0);
    vec3 diffuse = diff * material.lightColor;

	// specular
    float specularStrength = 0.5;
    vec3 viewDir = normalize(viewPos - FragPos);
    vec3 reflectDir = reflect(-lightDir, norm);  
    float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
    vec3 specular = specularStrength * spec * material.lightColor;  

	vec3 result = (ambient + diffuse + specular) * objectColor;
    FragColor = vec4(result, 1.0);

程序

#include <glad/glad.h>
#include <GLFW/glfw3.h>

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>

//#include"camera.h"
#include <iostream>

void framebuffer_size_callback(GLFWwindow* window, int width, int height);
// void mouse_callback(GLFWwindow* window, double xpos, double ypos);
// void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void processInput(GLFWwindow* window);

// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;

// camera
//Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
float lastX = SCR_WIDTH / 2.0f;
float lastY = SCR_HEIGHT / 2.0f;
bool firstMouse = true;

// timing
float deltaTime = 0.0f;
float lastFrame = 0.0f;

// lighting
glm::vec3 lightPos(1.2f, 1.0f, 2.0f);


const char* vertexShaderSource =
"#version 330 core\n"
"layout(location = 0) in vec3 aPos;\n"
"layout(location = 1) in vec3 aNormal;\n"

"out vec3 FragPos;\n"
"out vec3 Normal;\n"

"uniform mat4 model;\n"
"uniform mat4 view;\n"
"uniform mat4 projection;\n"

"void main()\n"
"{\n"
"FragPos = vec3(model * vec4(aPos, 1.0));\n"
"Normal = aNormal;\n"

"gl_Position = projection * view * vec4(FragPos, 1.0);\n"
"}\n";

const char* fragmentShaderSource =
"#version 330 core\n"
"out vec4 FragColor;\n"

"in vec3 Normal;\n"
"in vec3 FragPos;\n"

"uniform vec3 viewPos;\n"
"uniform vec3 objectColor;\n"
"struct Light {\n"
"float shininess;\n"
"vec3 lightPos;\n"
"vec3 lightColor;\n"
"};\n"

"uniform Light material;\n"

"void main()\n"
"{\n"
// ambient
"float ambientStrength = 0.1;\n"
"vec3 ambient = ambientStrength * material.lightColor;\n"

// diffuse 
"vec3 norm = normalize(Normal);\n"
"vec3 lightDir = normalize(material.lightPos - FragPos);\n"
"float diff = max(dot(norm, lightDir), 0.0);\n"
"vec3 diffuse = diff * material.lightColor;\n"

// specular
"float specularStrength = 0.5;\n"
"vec3 viewDir = normalize(viewPos - FragPos);\n"
"vec3 reflectDir = reflect(-lightDir, norm);\n"
"float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);\n"
"vec3 specular = specularStrength * spec * material.lightColor;\n"

"vec3 result = (ambient + diffuse + specular) * objectColor;\n"
"FragColor = vec4(result, 1.0);\n"
"}";


int main()
{
	//初始化
	glfwInit();
	glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
	glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
	glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);



	// 创建窗口
	GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
	if (window == NULL)
	{
		std::cout << "Failed to create GLFW window" << std::endl;
		glfwTerminate();
		return -1;
	}
	glfwMakeContextCurrent(window);
	glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);

	// 错误提示信息
	if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
	{
		std::cout << "Failed to initialize GLAD" << std::endl;
		return -1;
	}

	// 开启深度测试(深度值粗略可视为与相机*面的距离)
	glEnable(GL_DEPTH_TEST);

	//VertexShader创建顶点着色器
	int vertexShader = glCreateShader(GL_VERTEX_SHADER);
	glShaderSource(vertexShader, 1, &vertexShaderSource, NULL);
	glCompileShader(vertexShader);

	//Info获取编译出错信息
	int success;
	char info[512];
	glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &success);
	if (!success)
	{
		glGetShaderInfoLog(vertexShader, 512, NULL, info);
		std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << info << std::endl;
	}



	//片元着色器
	int fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);
	glShaderSource(fragmentShader, 1, &fragmentShaderSource, NULL);
	glCompileShader(fragmentShader);
	//编译信息
	glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &success);
	if (!success)
	{
		glGetShaderInfoLog(fragmentShader, 512, NULL, info);
		std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << info << std::endl;
	}


	//shaderProgramshader程序
	int shaderProgram = glCreateProgram();
	glAttachShader(shaderProgram, vertexShader);
	glAttachShader(shaderProgram, fragmentShader);
	glLinkProgram(shaderProgram);
	glGetProgramiv(shaderProgram, GL_LINK_STATUS, &success);
	if (!success)
	{
		glGetProgramInfoLog(shaderProgram, 512, NULL, info);
		std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << info << std::endl;
	}


	glDeleteShader(vertexShader);
	glDeleteShader(fragmentShader);
	float vertices[] = {
	-0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
	 0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
	 0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
	 0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
	-0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
	-0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,

	-0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
	 0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
	 0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
	 0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
	-0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
	-0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,

	-0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,
	-0.5f,  0.5f, -0.5f, -1.0f,  0.0f,  0.0f,
	-0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,
	-0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,
	-0.5f, -0.5f,  0.5f, -1.0f,  0.0f,  0.0f,
	-0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,

	 0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,
	 0.5f,  0.5f, -0.5f,  1.0f,  0.0f,  0.0f,
	 0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,
	 0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,
	 0.5f, -0.5f,  0.5f,  1.0f,  0.0f,  0.0f,
	 0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,

	-0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,
	 0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,
	 0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,
	 0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,
	-0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,
	-0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,

	-0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,
	 0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,
	 0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,
	 0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,
	-0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,
	-0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f
	};
	// first, configure the cube's VAO (and VBO)
	unsigned int VBO, cubeVAO;
	glGenVertexArrays(1, &cubeVAO);
	glGenBuffers(1, &VBO);

	glBindBuffer(GL_ARRAY_BUFFER, VBO);
	glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);

	glBindVertexArray(cubeVAO);

	// position attribute
	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)0);
	glEnableVertexAttribArray(0);
	// normal attribute
	glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)(3 * sizeof(float)));
	glEnableVertexAttribArray(1);

	glUseProgram(shaderProgram);


	// render loop
	// -----------
	while (!glfwWindowShouldClose(window))
	{
		// input
		// -----
		processInput(window);

		// render
		// ------
		glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
		glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // also clear the depth buffer now!


		// activate shader
		glUseProgram(shaderProgram);

		glm::vec3 objectColor(1.0f, 1.0f, 0.0f);
		objectColor = glm::vec3(sin((float)glfwGetTime()), 1.0f, 1.0f);
		glUniform3fv(glGetUniformLocation(shaderProgram, "objectColor"), 1, &objectColor[0]);

		glm::vec3 viewPos(1.0f, 1.0f, 0.0f);
		glUniform3fv(glGetUniformLocation(shaderProgram, "viewPos"), 1, &viewPos[0]);

		const glm::vec3 lightColor(1.0f, 1.0f, 1.0f);
		glUniform3fv(glGetUniformLocation(shaderProgram, "material.lightColor"), 1, &lightColor[0]);
		int a = glGetUniformLocation(shaderProgram, "material.lightColor");

		const float shininess = 32.0f;
		glUniform1f(glGetUniformLocation(shaderProgram, "material.shininess"), 32.0f);

		const glm::vec3 lightPos(1.0f, 0.5f, 0.31f);
		glUniform3fv(glGetUniformLocation(shaderProgram, "material.lightPos"), 1, &lightPos[0]);


		// create transformations
		glm::mat4 model = glm::mat4(1.0f); // make sure to initialize matrix to identity matrix first
		glm::mat4 view = glm::mat4(1.0f);
		glm::mat4 projection = glm::mat4(1.0f);
		model = glm::rotate(model, (float)glfwGetTime() * 100, glm::vec3(1.0f, 1.0f, 0.0f));
		view = glm::translate(view, glm::vec3(0.0f, 0.0f, -200.0f));
		projection = glm::perspective(glm::radians(80.0f), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 300.0f);

		// retrieve the matrix uniform locations
		unsigned int modelLoc = glGetUniformLocation(shaderProgram, "model");
		unsigned int viewLoc = glGetUniformLocation(shaderProgram, "view");

		glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
		glUniformMatrix4fv(viewLoc, 1, GL_FALSE, &view[0][0]);

		glUniformMatrix4fv(glGetUniformLocation(shaderProgram, "projection"), 1, GL_FALSE, &projection[0][0]);
		// render box
		glBindVertexArray(cubeVAO);
		glDrawArrays(GL_TRIANGLES, 0, 36);
		//glPolygonMode(GL_FRONT, GL_LINE);

		glfwSwapBuffers(window);
		glfwPollEvents();
	}


	glDeleteVertexArrays(1, &cubeVAO);
	glDeleteBuffers(1, &VBO);


	glfwTerminate();
	return 0;
}


void processInput(GLFWwindow* window)
{
	if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
		glfwSetWindowShouldClose(window, true);
}


void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
	glViewport(0, 0, width, height);
}

LearnOpenGL09——材质
LearnOpenGL09——材质

上一篇:OpenGL学习笔记《七》摄像机


下一篇:R语言在逻辑回归中求R square R方