我正在尝试从rpy2调用R glm.nb:
from rpy2 import robjects
from rpy2.robjects.packages import importr
MASS = importr('MASS')
stats = importr('stats')
def glm_nb(x,y):
formula = robjects.Formula('y~x')
env = formula.environment
env["x"] = x
env["y"] = y
fitted = MASS.glm_nb(formula)
# fitted = stats.glm(formula)
return fitted
测试:
N = 100
x = np.random.rand(N)
y = x + np.random.poisson( 10, N)
fitted = glm_nb(x, np.round(y))
返回错误:
104 for k, v in kwargs.items():
105 new_kwargs[k] = conversion.py2ri(v)
--> 106 res = super(Function, self).__call__(*new_args, **new_kwargs)
107 res = conversion.ri2ro(res)
108 return res
RRuntimeError: Error in x[good, , drop = FALSE] * w : non-conformable arrays
但是,当我运行简单的glm时,它运行正常.问题可能是什么,如何解决?
解决方法:
基本问题涉及R中矩阵和数组的数据结构.下面重现了R中带有fix的错误,在rpy2中复制fix的挑战以及有效的解决方案:
R错误和修复
library(MASS)
# ARRAY
x <- array(rnorm(100))
y <- as.integer(x) + array(rpois(100, 10))
model2 <- glm.nb(y~x)
Error in x[good, , drop = FALSE] * w : non-conformable arrays
但是,可以使用三个解决方法:1)使用矩阵(二维特殊类型的数组); 2)等效定义的数组(指定dim参数); 3)矩阵转换.请注意:根据随机值可能会出现迭代限制警告,但仍会继续运行.
# MATRIX
x <- matrix(rnorm(100))
y <- as.integer(x) + matrix(rpois(100, 10))
model1 <- glm.nb(y~x)
# EQUIVALENT ARRAY
x <- array(rnorm(100),c(100,1))
y <- as.integer(x) + matrix(rpois(100, 10),c(100,1))
model2 <- glm.nb(y~x)
# EXPLICIT MATRIX CONVERSION (USED IN WORKING SOLUTION)
x <- as.matrix(array(rnorm(100)))
y <- as.integer(x) + as.matrix(array(rpois(100, 10)))
model3 <- glm.nb(y~x)
挑战
Python的rpy2不能从我的脚本工作中有效地将numpy矩阵传递给R矩阵,因为stat的简单glm()和MASS的glm.nb()都会出现不同的错误:
import numpy as np
from rpy2 import robjects
from rpy2.robjects.packages import importr
from rpy2.robjects.numpy2ri import numpy2ri
MASS = importr('MASS')
#rpy2 + negative binomial glm
stats = importr('stats')
def glm_nb(x,y):
formula = robjects.Formula('y~x')
env = formula.environment
env["x"] = x
env["y"] = y
fitted = MASS.glm_nb(formula)
# fitted = stats.glm(formula)
return fitted
N = 100
x = np.random.rand(N)
x = np.asmatrix(x) # PYTHON CONVERSION TO MATRIX
r_x = numpy2ri(x)
# REPLACED NP.ROUND FOR AS.TYPE() TO COMPARE WITH R
y = x.astype(int) + np.random.poisson(10, N)
y = np.asmatrix(y) # PYTHON CONVERSION TO MATRIX
r_y = numpy2ri(y)
fitted = glm_nb(r_x, r_y)
rpy2.rinterface.RRuntimeError: Error in glm.fitter(x = X, y = Y, w =
w, start = start, etastart = etastart, : object ‘fit’ not found
甚至numpy2ri.activate()都无法转换numpy矩阵:
from rpy2.robjects import numpy2ri
robjects.numpy2ri.activate()
r_x = numpy2ri.ri2py(x)
r_y = numpy2ri.ri2py(y)
NotImplementedError: Conversion ‘ri2py’ not defined for objects of
type'<class 'numpy.matrixlib.defmatrix.matrix'>'
工作方案
只需与robjects.r()接口,并让R将数组对象转换为矩阵即可.回忆上面的第三个修复:
N = 100
x = np.random.rand(N)
r_x = numpy2ri(x)
y = x.astype(int) + np.random.poisson(10, N)
r_y = numpy2ri(y)
from rpy2.robjects import r
r.assign("y", r_y)
r.assign("x", r_x)
r("x <- as.matrix(x)")
r("y <- as.matrix(y)")
r("res <- glm.nb(y~x)")
r_result = r("res[1:5]")
# CONVERSION INTO PY DICTIONARY
from rpy2.robjects import pandas2ri
pandas2ri.activate()
pyresult = pandas2ri.ri2py(r_result)
print(pyresult) # OUTPUTS COEFF, RESID, FITTED VALS, EFFECTS, R
# OR OLDER DEPRECATED CONVERSION
import pandas.rpy.common as com
pyresult = com.convert_robj(r_result)
print(pyresult) # OUTPUTS COEFF, RESID, FITTED VALS, EFFECTS, R
命令行解决方案
如果在您的应用程序中允许,只需从Python作为命令行子进程调用R建模脚本,绕过对rpy2的任何需要,甚至根据需要传递参数:
from subprocess import Popen, PIPE
command = 'Rscript.exe'
path2Script = 'path/to/Script.R'
args = ['arg1', 'arg2', 'arg3']
cmd = [command, path2Script] + args
p = Popen(cmd,stdin= PIPE, stdout= PIPE, stderr= PIPE)
output,error = p.communicate()
if p.returncode == 0:
print('R OUTPUT:\n {0}'.format(output))
else:
print('R ERROR:\n {0}'.format(error))