ROC 曲线:接收者操作特征曲线(receiver operating characteristic curve),是反映敏感性和特异性连续变量的综合指标,roc 曲线上每个点反映着对同一信号刺激的感受性。
对于分类器或者说分类算法,评价指标主要有precision,recall,F1 score等,以及这里要讨论的ROC和AUC。下图是一个 ROC 曲线的示例:
- 横坐标:Sensitivity,伪正类率(False positive rate, FPR),预测为正但实际为负的样本占所有负例样本 的比例;
- 纵坐标:1-Specificity,真正类率(True positive rate, TPR),预测为正且实际为正的样本占所有正例样本 的比例。
在一个二分类模型中,假设采用逻辑回归分类器,其给出针对每个实例为正类的概率,那么通过设定一个阈值如 0.6,概率大于等于 0.6 的为正类,小于 0.6 的为负类。对应的就可以算出一组(FPR,TPR),在平面中得到对应坐标点。随着阈值的逐渐减小,越来越多的实例被划分为正类,但是这些正类中同样也掺杂着真正的负实例,即 TPR 和 FPR 会同时增大。阈值最大时,对应坐标点为(0,0),阈值最小时,对应坐标点(1,1)。
如下面这幅图,(a)图中实线为 ROC 曲线,线上每个点对应一个阈值。
(a) 理想情况下,TPR 应该接近 1,FPR 应该接近 0。ROC 曲线上的每一个点对应于一个 threshold,对于一个分类器,每个 threshold 下会有一个 TPR 和 FPR。比如 Threshold 最大时,TP=FP=0,对应于原点;Threshold 最小时,TN=FN=0,对应于右上角的点(1,1)。
(b) P 和 N 得分不作为特征间距离 d 的一个函数,随着阈值 theta 增加,TP 和 FP 都增加。
- 横轴 FPR:1-TNR,1-Specificity,FPR 越大,预测正类中实际负类越多。
- 纵轴 TPR:Sensitivity(正类覆盖率),TPR 越大,预测正类中实际正类越多。
- 理想目标:TPR=1,FPR=0,即图中(0,1)点,故 ROC 曲线越靠拢(0,1)点,越偏离 45 度对角线越好,Sensitivity、Specificity 越大效果越好。
随着阈值 threshold 调整,ROC 坐标系里的点如何移动可以参考:
三、如何画 ROC 曲线
对于一个特定的分类器和测试数据集,显然只能得到一个分类结果,即一组 FPR 和 TPR 结果,而要得到一个曲线,我们实际上需要一系列 FPR 和 TPR 的值,这又是如何得到的呢?我们先来看一下 Wikipedia 上对 ROC 曲线的定义:
In signal detection theory, a receiver operating characteristic (ROC), or simply ROC curve, is a graphical plot which illustrates the performance of a binary classifier system as its discrimination threshold is varied.
问题在于“as its discrimination threashold is varied”。如何理解这里的“discrimination threashold”呢?我们忽略了分类器的一个重要功能“概率输出”,即表示分类器认为某个样本具有多大的概率属于正样本(或负样本)。通过更深入地了解各个分类器的内部机理,我们总能想办法得到一种概率输出。通常来说,是将一个实数范围通过某个变换映射到(0,1)区间。
假如我们已经得到了所有样本的概率输出(属于正样本的概率),现在的问题是如何改变“discrimination threashold”?我们根据每个测试样本属于正样本的概率值从大到小排序。下图是一个示例,图*有 20 个测试样本,“Class”一栏表示每个测试样本真正的标签(p 表示正样本,n 表示负样本),“Score”表示每个测试样本属于正样本的概率。
接下来,我们从高到低,依次将“Score”值作为阈值 threshold,当测试样本属于正样本的概率大于或等于这个 threshold 时,我们认为它为正样本,否则为负样本。举例来说,对于图中的第 4 个样本,其“Score”值为 0.6,那么样本 1,2,3,4 都被认为是正样本,因为它们的“Score”值都大于等于 0.6,而其他样本则都认为是负样本。每次选取一个不同的 threshold,我们就可以得到一组 FPR 和 TPR,即 ROC 曲线上的一点。这样一来,我们一共得到了 20 组 FPR 和 TPR 的值,将它们画在 ROC 曲线的结果如下图:
当我们将 threshold 设置为 1 和 0 时,分别可以得到 ROC 曲线上的(0,0)和(1,1)两个点。将这些(FPR,TPR)对连接起来,就得到了 ROC 曲线。当 threshold 取值越多,ROC 曲线越平滑。
其实,我们并不一定要得到每个测试样本是正样本的概率值,只要得到这个分类器对该测试样本的“评分值”即可(评分值并不一定在(0,1)区间)。评分越高,表示分类器越肯定地认为这个测试样本是正样本,而且同时使用各个评分值作为 threshold。我认为将评分值转化为概率更易于理解一些。
四、AUC
AUC 值的计算
AUC (Area Under Curve) 被定义为 ROC 曲线下的面积,显然这个面积的数值不会大于 1。又由于 ROC 曲线一般都处于 y=x 这条直线的上方,所以 AUC 的取值范围一般在 0.5 和 1 之间。使用 AUC 值作为评价标准是因为很多时候 ROC 曲线并不能清晰的说明哪个分类器的效果更好,而作为一个数值,对应 AUC 更大的分类器效果更好。
AUC 的计算有两种方式,梯形法和 ROC AUCH 法,都是以逼近法求近似值,具体见wikipedia。
AUC 意味着什么
那么 AUC 值的含义是什么呢?根据(Fawcett, 2006),AUC 的值的含义是:
The AUC value is equivalent to the probability that a randomly chosen positive example is ranked higher than a randomly chosen negative example.
这句话有些绕,我尝试解释一下:首先 AUC 值是一个概率值,当你随机挑选一个正样本以及一个负样本,当前的分类算法根据计算得到的 Score 值将这个正样本排在负样本前面的概率就是 AUC 值。当然,AUC 值越大,当前的分类算法越有可能将正样本排在负样本前面,即能够更好的分类。
从 AUC 判断分类器(预测模型)优劣的标准:
- AUC = 1,是完美分类器,采用这个预测模型时,存在至少一个阈值能得出完美预测。绝大多数预测的场合,不存在完美分类器。
- 0.5 < AUC < 1,优于随机猜测。这个分类器(模型)妥善设定阈值的话,能有预测价值。
- AUC = 0.5,跟随机猜测一样(例:丢铜板),模型没有预测价值。
- AUC < 0.5,比随机猜测还差;但只要总是反预测而行,就优于随机猜测。
三种 AUC 值示例:
简单说:AUC 值越大的分类器,正确率越高。
为什么使用 ROC 曲线
既然已经这么多评价标准,为什么还要使用 ROC 和 AUC 呢?因为 ROC 曲线有个很好的特性:当测试集中的正负样本的分布变化的时候,ROC 曲线能够保持不变。在实际的数据集中经常会出现类不平衡(class imbalance)现象,即负样本比正样本多很多(或者相反),而且测试数据中的正负样本的分布也可能随着时间变化。下图是 ROC 曲线和Precision-Recall曲线的对比:
在上图中,(a)和(c)为 ROC 曲线,(b)和(d)为 Precision-Recall 曲线。(a)和(b)展示的是分类其在原始测试集(正负样本分布平衡)的结果,(c)和(d)是将测试集中负样本的数量增加到原来的 10 倍后,分类器的结果。可以明显的看出,ROC 曲线基本保持原貌,而 Precision-Recall 曲线则变化较大。
转载 http://zhwhong.ml/2017/04/14/ROC-AUC-Precision-Recall-analysis/