equals()方法和hashCode()方法详解

equals()方法和hashCode()方法详解

1. Object类中equals()方法源代码如下所示:

/**
* Object类中的equals()方法
*/
public boolean equals(Object obj) {
return (this == obj);
}

由以上源代码知,Object类中的equals()方法是直接使用==运算符来判断两个对象相等的。

  • 引用类型变量使用==时,比较的是引用类型变量指向的对象的内存地址
  • 基本类型使用==时,比较值

Objcect类中的hashCode源代码如下:

 /**
* Returns a hash code value for the object. This method is
* supported for the benefit of hash tables such as those provided by
* {@link java.util.HashMap}.
* <p>
* The general contract of {@code hashCode} is:
* <ul>
* <li>Whenever it is invoked on the same object more than once during
* an execution of a Java application, the {@code hashCode} method
* must consistently return the same integer, provided no information
* used in {@code equals} comparisons on the object is modified.
* This integer need not remain consistent from one execution of an
* application to another execution of the same application.
* <li>If two objects are equal according to the {@code equals(Object)}
* method, then calling the {@code hashCode} method on each of
* the two objects must produce the same integer result.
* <li>It is <em>not</em> required that if two objects are unequal
* according to the {@link java.lang.Object#equals(java.lang.Object)}
* method, then calling the {@code hashCode} method on each of the
* two objects must produce distinct integer results. However, the
* programmer should be aware that producing distinct integer results
* for unequal objects may improve the performance of hash tables.
* </ul>
* <p>
* As much as is reasonably practical, the hashCode method defined by
* class {@code Object} does return distinct integers for distinct
* objects. (This is typically implemented by converting the internal
* address of the object into an integer, but this implementation
* technique is not required by the
* Java&trade; programming language.)
*
* @return a hash code value for this object.
* @see java.lang.Object#equals(java.lang.Object)
* @see java.lang.System#identityHashCode
*/
public native int hashCode();// java8中的hashCode方法,

上面的注释中有说明如下几点:

  • 对象的hashCode值通常是根据对象的内存地址计算得来
  • 两个对象equals()结果为true时,两个对象的hashCode值一定相等,不同对象的hashCode不等
  • native标识此方法不是java语言实现

hashcode的用处:

hashCode()在哈希表中起作用,如HashSet、HashMap等

Object类中的toString()方法源代码如下:

public String toString() {
// 从这里就能看出打印对象时不重写toString()方法时,就会打印出对象的hashCode值
return getClass().getName() + "@" + Integer.toHexString(hashCode());
}

2. String类中equals()方法和hashCode()方法

String类中部分源代码如下所示:


/** The value is used for character storage. */
private final char value[];
/** Cache the hash code for the string */
private int hash; // Default to 0
/**
* 无参构造方法
*/
public String() {
this.value = "".value;
}
/**
* 有参构造方法
*/
public String(String original) {
this.value = original.value;
this.hash = original.hash;
}
/**
*String类重写的equals方法
*/
public boolean equals(Object anObject) {
if (this == anObject) {// 此处的this指向a.equals(b)的a对象,即谁调用指向谁
return true;
}
if (anObject instanceof String) {
String anotherString = (String)anObject;
int n = value.length;
if (n == anotherString.value.length) {
char v1[] = value;
char v2[] = anotherString.value;
int i = 0;
while (n-- != 0) {
if (v1[i] != v2[i])
return false;
i++;
}
return true;
}
}
return false;
}
/**
* Returns a hash code for this string. The hash code for a
* {@code String} object is computed as
* <blockquote><pre>
* s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
* </pre></blockquote>
* using {@code int} arithmetic, where {@code s[i]} is the
* <i>i</i>th character of the string, {@code n} is the length of
* the string, and {@code ^} indicates exponentiation.
* (The hash value of the empty string is zero.)
*
* @return a hash code value for this object.
*/
public int hashCode() {
int h = hash;
if (h == 0 && value.length > 0) {
char val[] = value; for (int i = 0; i < value.length; i++) {
h = 31 * h + val[i];
}
hash = h;
}
return h;
}

从上面的源码中,我们不难发现String类已经重写了equals()方法和hashCode()方法。

String类重写的equals()方法判断流程如下:

  1. 使用==来判断两个对象的内存地址是否相同,相同返回true;
  2. 如果两个对象的内存地址不同,程序继续往下走,判断另一个对象是否是String类型的;
  3. 如果比较对象不是String类型,直接返回false
  4. 如果是String类型的,进行类型强转;
  5. 比较两个String的字符数组长度,如果长度不同,返回false
  6. 利用while循环来逐位比较字符是否相等,直到循环结束,所有字符都相等,则返回true,否则返回false;

下面来看一下重写的hashCode()方法。

  1. 首先String类中定义了一个int类型的变量hash用来缓存String对象的hash值;
  2. 如果当前调用hashCode()方法的String对象在常量池没有找到,并且该对象的length长度大于0,则继续往下走,否则返回0;即String类默认""字符串的hashCode()值为0;
  3. 遍历字符数组,获取每一个字符的ASCII码表对应的值 和之前的hash值相加,这样就保证了相同的字符串的hashCode()返回值相同,计算公式在注释里已经写出来了:s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
  4. 将计算出来的结果保存到hash变量中,并返回该值;

这里为什么要乘以31呢?原因是为了性能,不仅仅指降低了计算速度,也降低了哈希冲突的概率。

哈希冲突:此处指不同的字符串生成了相同的hashCode值。

31是一个奇素数。如果乘数是偶数,并且乘法溢出的话,信息就会丢失,因为与2相乘等价于移位运算(低位补0)。使用素数的好处并不很明显,但是习惯上使用素数来计算散列结果。 31 有个很好的性能,即用移位和减法来代替乘法,可以得到更好的性能: 31 * i == (i << 5)- i, 现代的 VM 可以自动完成这种优化。这个公式可以很简单的推导出来。 ---- 《Effective Java

素数:质数又称素数,指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。

3. 总结

一般会有如下的约定:

  1. equals()结果为true的两个对象,他们的hashCode()结果要相同
  2. hashCode()相等的两个对象,他们的equals()结果可以为false

也就是说,equals和hashcode方法是充分不必要的关系

所以,又有:

  1. 重写equals方法,必须重写hashcode方法
  2. 重写hashcode方法,可以不重写equals方法

一般建议都重写。

上一篇:hdu 1025 Constructing Roads In JGShining’s Kingdom 【dp+二分法】


下一篇:Excel(Access)文件共享锁定数溢出(Error 3052)的解决方法