Maximum sum
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 39599 | Accepted: 12370 |
Description
Given a set of n integers: A={a1, a2,..., an}, we define a function d(A) as below:
Your task is to calculate d(A).
Input
The input consists of T(<=30) test cases. The number of test cases (T) is given in the first line of the input.
Each test case contains two lines. The first line is an integer n(2<=n<=50000). The second line contains n integers: a1, a2, ..., an. (|ai| <= 10000).There is an empty line after each case.
Each test case contains two lines. The first line is an integer n(2<=n<=50000). The second line contains n integers: a1, a2, ..., an. (|ai| <= 10000).There is an empty line after each case.
Output
Print exactly one line for each test case. The line should contain the integer d(A).
Sample Input
1 10
1 -1 2 2 3 -3 4 -4 5 -5
Sample Output
13
Hint
In the sample, we choose {2,2,3,-3,4} and {5}, then we can get the answer.
Huge input,scanf is recommended.
Source
POJ Contest,Author:Mathematica@ZSU
题意:求两段和最大
一开始自己想
d[i][0]前i个以i结尾选了一段
d[i][1]前i个以i结尾选了两段
然后扫描维护一个d[i][0]的最大值mx,转移
d[i][0]=max(0,d[i-1][0])+a[i];
d[i][1]=max(d[i-1][1],mx)+a[i];
初始化注意一下就行了
还有一种做法:
双向求最大字段和,最后枚举第一段的结束位置求
//两个dp函数,两种方法
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=5e4+,INF=1e9;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int T,n,a[N];
int d[N][],ans;
void dp(){
ans=-INF;int mx=a[];
d[][]=a[];d[][]=-INF;
for(int i=;i<=n;i++){
d[i][]=max(,d[i-][])+a[i];
d[i][]=max(d[i-][],mx)+a[i];
mx=max(mx,d[i][]);
ans=max(ans,d[i][]);
}
}
void dp2(){
ans=-INF;
for(int i=;i<=n;i++) d[i][]=max(,d[i-][])+a[i];
d[n+][]=;
for(int i=n;i>=;i--) d[i][]=max(,d[i+][])+a[i];
int mx=d[][];
for(int i=;i<=n;i++){
ans=max(ans,mx+d[i][]);
mx=max(mx,d[i][]);
}
}
int main(int argc, const char * argv[]) {
T=read();
while(T--){
n=read();
for(int i=;i<=n;i++) a[i]=read();
dp();
printf("%d\n",ans);
} return ;
}