BERT有什么局限性?
从XLNet论文中,提到了BERT的两个缺点,分别如下:
- BERT在第一个预训练阶段,假设句子中多个单词被Mask掉,这些被Mask掉的单词之间没有任何关系,是条件独立的,然而有时候这些单词之间是有关系的,比如”New York is a city”,假设我们Mask住”New”和”York”两个词,那么给定”is a city”的条件下”New”和”York”并不独立,因为”New York”是一个实体,看到”New”则后面出现”York”的概率要比看到”Old”后面出现”York”概率要大得多。
- 但是需要注意的是,这个问题并不是什么大问题,甚至可以说对最后的结果并没有多大的影响,因为本身BERT预训练的语料就是海量的(动辄几十个G),所以如果训练数据足够大,其实不靠当前这个例子,靠其它例子,也能弥补被Mask单词直接的相互关系问题,因为总有其它例子能够学会这些单词的相互依赖关系。
- BERT的在预训练时会出现特殊的[MASK],但是它在下游的fine-tune中不会出现,这就出现了预训练阶段和fine-tune阶段不一致的问题。其实这个问题对最后结果产生多大的影响也是不够明确的,因为后续有许多BERT相关的预训练模型仍然保持了[MASK]标记,也取得了很大的结果,而且很多数据集上的结果也比BERT要好。但是确确实实引入[MASK]标记,也是为了构造自编码语言模型而采用的一种折中方式。
另外还有一个缺点,是BERT在分词后做[MASK]会产生的一个问题,为了解决OOV的问题,我们通常会把一个词切分成更细粒度的WordPiece。BERT在Pretraining的时候是随机Mask这些WordPiece的,这就可能出现只Mask一个词的一部分的情况,例如:
probability这个词被切分成”pro”、”#babi”和”#lity”3个WordPiece。有可能出现的一种随机Mask是把”#babi” Mask住,但是”pro”和”#lity”没有被Mask。这样的预测任务就变得容易了,因为在”pro”和”#lity”之间基本上只能是”#babi”了。这样它只需要记住一些词(WordPiece的序列)就可以完成这个任务,而不是根据上下文的语义关系来预测出来的。类似的中文的词”模型”也可能被Mask部分(其实用”琵琶”的例子可能更好,因为这两个字只能一起出现而不能单独出现),这也会让预测变得容易。
为了解决这个问题,很自然的想法就是词作为一个整体要么都Mask要么都不Mask,这就是所谓的Whole Word Masking。这是一个很简单的想法,对于BERT的代码修改也非常少,只是修改一些Mask的那段代码。
摘自: https://blog.csdn.net/liujian20150808/article/details/105215963