LCA Tarjan:
理解:离线算法,建好树后再查询,一次DFS 吧所有查询解决完。
时间复杂度:O(n+q);
n个点 q次询问
补一下:链式向前星,并查集 ,Tarjan
代码
#include<iostream>
#include<math.h>
#include<stdio.h>
#include<algorithm>
#include<cstring>
using namespace std;
const int MAXN = 5e5+ 10;
int fa[MAXN], head[MAXN], head_ask[MAXN], cnt, cnt_ask, ans[MAXN];
bool vis[MAXN];
int n, m, s;
struct Edge{
int to, dis, next;
int num;
}edge[MAXN << 1], ask[MAXN << 1];
void add_edge(int u, int v, int dis) {
edge[++cnt].to = v;
edge[cnt].next = head[u];
head[u] = cnt;
}
void add_ask(int x, int y, int num) { //num 第几个查询
ask[++cnt_ask].to = y;
ask[cnt_ask].num = num; //第几个查询
ask[cnt_ask].next = head_ask[x];
head_ask[x] = cnt_ask;
}
int find(int x) { //并查集
return fa[x] == x ? x : fa[x] = find(fa[x]);
}
void init() {
cnt = 1;
cnt_ask = 1;
memset(vis, 0, sizeof(vis));
fa[n] = n;
}
void Tarjan(int x) {
vis[x] = true;
for(int i = head[x]; i ; i = edge[i].next) {
int to = edge[i].to;
if( !vis[to] ) {
Tarjan(to);
fa[to] = x;
}
}
for(int i = head_ask[x]; i; i = ask[i].next) {
int to = ask[i].to;
if( vis[to] ){
ans[ask[i].num] = find(to);
}
}
}
int main () {
ios::sync_with_stdio(0);
cin.tie(0);
cin >> n >> m >> s;
int x, y;
init();
for(int i = 1; i < n; ++i) {
fa[i] = i;
cin >> x >> y;
add_edge(x, y, 0);
add_edge(y, x, 0);
}
for(int i = 1; i <= m; ++i) {
cin >> x >> y;
add_ask(x, y, i);
add_ask(y, x, i);
}
Tarjan(s);
for(int i = 1; i <= m; ++i) {
cout << ans[i] << endl;
}
}
练习题:
LCA 倍增:
理解:
1) 在线算法
2)暴力的优化,不是一步一步向上找节点,每次走 步
模板待补