学习OpenCV——BOW特征提取函数(特征点篇)

没日没夜的改论文生活终于要告一段落了,比起改论文,学OpenCV就是一件幸福的事情。OpenCV的发展越来越完善了,已经可以直接使用BOW函数来进行对象分类了。

简单的通过特征点分类的方法:                                                                      

一、train

1.提取+/- sample的feature,每幅图提取出的sift特征个数不定(假设每个feature有128维)

2.利用聚类方法(e.g K-means)将不定数量的feature聚类为固定数量的(比如10个)words即BOW(bag of word)

(本篇文章主要完成以上的工作!)

3.normalize,并作这10个类的直方图e.g [0.1,0.2,0.7,0...0];

4.将each image的这10个word作为feature_instance 和 (手工标记的) label(+/-)进入SVM训练

二、predict

1. 提取test_img的feature(如137个)

2. 分别求each feature与10个类的距离(e.g. 128维欧氏距离),确定该feature属于哪个类

3. normalize,并作这10个类的直方图e.g [0,0.2,0.2,0.6,0...0];

4. 应用SVM_predict进行结果预测

通过OpenCV实现feature聚类 BOW

首先在此介绍一下OpenCV的特征描述符与BOW的通用函数。

主要的通用接口有:

 

1.特征点提取

Ptr<FeatureDetector> FeatureDetector::create(const string& detectorType)

  1. Ptr<FeatureDetector> FeatureDetector::create(const string& detectorType)
  2. //  "FAST" – FastFeatureDetector
  3. //  "STAR" – StarFeatureDetector
  4. //  "SIFT" – SIFT (nonfree module)//必须使用 initModule_nonfree()初始化
  5. //  "SURF" – SURF (nonfree module)//同上;
  6. //  "ORB" – ORB
  7. //  "MSER" – MSER
  8. //  "GFTT" – GoodFeaturesToTrackDetector
  9. //  "HARRIS" – GoodFeaturesToTrackDetector with Harris detector enabled
  10. //  "Dense" – DenseFeatureDetector
  11. //  "SimpleBlob" – SimpleBlobDetector

根据以上接口,测试不同的特征点:

对同一幅图像进行水平翻转前后的两幅图像检测特征点检测结果,

检测到的特征点的坐标类型为:pt: int / float(与keyPoint的性质有关)

数量分别为num1, num2,

"FAST" – FastFeatureDetector           pt:int (num1:615  num2:618)
 "STAR" – StarFeatureDetector           pt:int (num1:43   num2:42 )
 "SIFT" – SIFT (nonfree module)          pt:float(num1:155  num2:135)            //必须使用 initModule_nonfree()初始化
 "SURF" – SURF (nonfree module)     pt:float(num1:344  num2:342)           //同上; 
 "ORB" – ORB                                        pt:float(num1:496  num2:497)
 "MSER" – MSER                                 pt:float(num1:51   num2:45 )
 "GFTT" – GoodFeaturesToTrackDetector        pt:int (num1:744  num2:771)
 "HARRIS" – GoodFeaturesToTrackDetector with Harris detector enabled         pt:float(num1:162  num2:160)
 "Dense" – DenseFeatureDetector          pt:int (num1:3350 num2:3350)

2.特征描述符提取

Ptr<DescriptorExtractor> DescriptorExtractor::create(const string& descriptorExtractorType)

  1. //  Ptr<DescriptorExtractor> DescriptorExtractor::create(const string& descriptorExtractorType)
  2. //  "SIFT" – SIFT
  3. //  "SURF" – SURF
  4. //  "ORB" – ORB
  5. //  "BRIEF" – BriefDescriptorExtractor

3.描述符匹配

Ptr<DescriptorMatcher> descriptorMatcher = DescriptorMatcher::create(const string& descriptorMatcherType)

  1. //  descriptorMatcherType – Descriptor matcher type.
  2. //  Now the following matcher types are supported:
  3. //      BruteForce (it uses L2 )
  4. //      BruteForce-L1
  5. //      BruteForce-Hamming
  6. //      BruteForce-Hamming(2)
  7. //      FlannBased
  8. Ptr<DescriptorMatcher> descriptorMatcher = DescriptorMatcher::create( "BruteForce" );

4.class BOWTrainer

class BOWKmeansTrainer::public BOWTrainer:Kmeans算法训练

BOWKMeansTrainer ::BOWKmeansTrainer(int clusterCount, const TermCriteria& termcrit=TermCriteria(), int attempts=3, int flags=KMEANS_PP_CENTERS)

parameter same as Kmeans

代码实现:                                                                                                                    

1.画特征点。

2.特征点Kmeans聚类,每一种颜色代表一个类别。

  1. #include "opencv2/highgui/highgui.hpp"
  2. #include "opencv2/calib3d/calib3d.hpp"
  3. #include "opencv2/imgproc/imgproc.hpp"
  4. #include "opencv2/features2d/features2d.hpp"
  5. #include "opencv2/nonfree/nonfree.hpp"
  6. #include <iostream>
  7. using namespace cv;
  8. using namespace std;
  9. #define ClusterNum 10
  10. void DrawAndMatchKeypoints(const Mat& Img1,const Mat& Img2,const vector<KeyPoint>& Keypoints1,
  11. const vector<KeyPoint>& Keypoints2,const Mat& Descriptors1,const Mat& Descriptors2)
  12. {
  13. Mat keyP1,keyP2;
  14. drawKeypoints(Img1,Keypoints1,keyP1,Scalar::all(-1),0);
  15. drawKeypoints(Img2,Keypoints2,keyP2,Scalar::all(-1),0);
  16. putText(keyP1, "drawKeyPoints", cvPoint(10,30), FONT_HERSHEY_SIMPLEX, 1 ,Scalar :: all(-1));
  17. putText(keyP2, "drawKeyPoints", cvPoint(10,30), FONT_HERSHEY_SIMPLEX, 1 ,Scalar :: all(-1));
  18. imshow("img1 keyPoints",keyP1);
  19. imshow("img2 keyPoints",keyP2);
  20. Ptr<DescriptorMatcher> descriptorMatcher = DescriptorMatcher::create( "BruteForce" );
  21. vector<DMatch> matches;
  22. descriptorMatcher->match( Descriptors1, Descriptors2, matches );
  23. Mat show;
  24. drawMatches(Img1,Keypoints1,Img2,Keypoints2,matches,show,Scalar::all(-1),CV_RGB(255,255,255),Mat(),4);
  25. putText(show, "drawMatchKeyPoints", cvPoint(10,30), FONT_HERSHEY_SIMPLEX, 1 ,Scalar :: all(-1));
  26. imshow("match",show);
  27. }
  28. //测试OpenCV:class BOWTrainer
  29. void BOWKeams(const Mat& img, const vector<KeyPoint>& Keypoints,
  30. const Mat& Descriptors, Mat& centers)
  31. {
  32. //BOW的kmeans算法聚类;
  33. BOWKMeansTrainer bowK(ClusterNum,
  34. cvTermCriteria (CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 10, 0.1),3,2);
  35. centers = bowK.cluster(Descriptors);
  36. cout<<endl<<"< cluster num: "<<centers.rows<<" >"<<endl;
  37. Ptr<DescriptorMatcher> descriptorMatcher = DescriptorMatcher::create( "BruteForce" );
  38. vector<DMatch> matches;
  39. descriptorMatcher->match(Descriptors,centers,matches);//const Mat& queryDescriptors, const Mat& trainDescriptors第一个参数是待分类节点,第二个参数是聚类中心;
  40. Mat demoCluster;
  41. img.copyTo(demoCluster);
  42. //为每一类keyPoint定义一种颜色
  43. Scalar color[]={CV_RGB(255,255,255),
  44. CV_RGB(255,0,0),CV_RGB(0,255,0),CV_RGB(0,0,255),
  45. CV_RGB(255,255,0),CV_RGB(255,0,255),CV_RGB(0,255,255),
  46. CV_RGB(123,123,0),CV_RGB(0,123,123),CV_RGB(123,0,123)};
  47. for (vector<DMatch>::iterator iter=matches.begin();iter!=matches.end();iter++)
  48. {
  49. cout<<"< descriptorsIdx:"<<iter->queryIdx<<"  centersIdx:"<<iter->trainIdx
  50. <<" distincs:"<<iter->distance<<" >"<<endl;
  51. Point center= Keypoints[iter->queryIdx].pt;
  52. circle(demoCluster,center,2,color[iter->trainIdx],-1);
  53. }
  54. putText(demoCluster, "KeyPoints Clustering: 一种颜色代表一种类型",
  55. cvPoint(10,30), FONT_HERSHEY_SIMPLEX, 1 ,Scalar :: all(-1));
  56. imshow("KeyPoints Clusrtering",demoCluster);
  57. }
  58. int main()
  59. {
  60. cv::initModule_nonfree();//使用SIFT/SURF create之前,必须先initModule_<modulename>();
  61. cout << "< Creating detector, descriptor extractor and descriptor matcher ...";
  62. Ptr<FeatureDetector> detector = FeatureDetector::create( "SIFT" );
  63. Ptr<DescriptorExtractor> descriptorExtractor = DescriptorExtractor::create( "SIFT" );
  64. Ptr<DescriptorMatcher> descriptorMatcher = DescriptorMatcher::create( "BruteForce" );
  65. cout << ">" << endl;
  66. if( detector.empty() || descriptorExtractor.empty() )
  67. {
  68. cout << "Can not create detector or descriptor exstractor or descriptor matcher of given types" << endl;
  69. return -1;
  70. }
  71. cout << endl << "< Reading images..." << endl;
  72. Mat img1 = imread("D:/demo0.jpg");
  73. Mat img2 = imread("D:/demo1.jpg");
  74. cout<<endl<<">"<<endl;
  75. //detect keypoints;
  76. cout << endl << "< Extracting keypoints from images..." << endl;
  77. vector<KeyPoint> keypoints1,keypoints2;
  78. detector->detect( img1, keypoints1 );
  79. detector->detect( img2, keypoints2 );
  80. cout <<"img1:"<< keypoints1.size() << " points  img2:" <<keypoints2.size()
  81. << " points" << endl << ">" << endl;
  82. //compute descriptors for keypoints;
  83. cout << "< Computing descriptors for keypoints from images..." << endl;
  84. Mat descriptors1,descriptors2;
  85. descriptorExtractor->compute( img1, keypoints1, descriptors1 );
  86. descriptorExtractor->compute( img2, keypoints2, descriptors2 );
  87. cout<<endl<<"< Descriptoers Size: "<<descriptors2.size()<<" >"<<endl;
  88. cout<<endl<<"descriptor's col: "<<descriptors2.cols<<endl
  89. <<"descriptor's row: "<<descriptors2.rows<<endl;
  90. cout << ">" << endl;
  91. //Draw And Match img1,img2 keypoints
  92. //匹配的过程是对特征点的descriptors进行match;
  93. DrawAndMatchKeypoints(img1,img2,keypoints1,keypoints2,descriptors1,descriptors2);
  94. Mat center;
  95. //对img1提取特征点,并聚类
  96. //测试OpenCV:class BOWTrainer
  97. BOWKeams(img1,keypoints1,descriptors1,center);
  98. waitKey();
  99. }

学习OpenCV——BOW特征提取函数(特征点篇)

通过Qt实现DrawKeypoints:

  1. void Qt_test1::on_DrawKeypoints_clicked()
  2. {
  3. //initModule_nonfree();
  4. Ptr<FeatureDetector> detector = FeatureDetector::create( "FAST" );
  5. vector<KeyPoint> keypoints;
  6. detector->detect( src, keypoints );
  7. Mat DrawKeyP;
  8. drawKeypoints(src,keypoints,DrawKeyP,Scalar::all(-1),0);
  9. putText(DrawKeyP, "drawKeyPoints", cvPoint(10,30),
  10. FONT_HERSHEY_SIMPLEX, 0.5 ,Scalar :: all(255));
  11. cvtColor(DrawKeyP, image, CV_RGB2RGBA);
  12. QImage img = QImage((const unsigned char*)(image.data),
  13. image.cols, image.rows, QImage::Format_RGB32);
  14. QLabel *label = new QLabel(this);
  15. label->move(50, 50);//图像在窗口中所处的位置;
  16. label->setPixmap(QPixmap::fromImage(img));
  17. label->resize(label->pixmap()->size());
  18. label->show();
  19. }

学习OpenCV——BOW特征提取函数(特征点篇)

由于initModule_nonfree()总是出错,无法对SIFT与SURF特征点提取,

而且无法实现聚类因为运行/BOW的kmeans算法聚类:BOWKMeansTrainer bowK(ClusterNum, cvTermCriteria (CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 10, 0.1),3,2);总是出错,不知道咋解决~~~~~(>_<)~~~~ 需要继续学习

from: http://blog.csdn.net/yangtrees/article/details/8456237

上一篇:vue/cli 3.0 font-size随屏幕大小变化而变化 rem设置


下一篇:Luke 6:43-45