本文对AHB协议作了简单整理,整理自两篇文章:
1. 简介
AHB总线规范是AMBA总线规范的一部分,AMBA总线规范是ARM公司提出的总线规范,被大多数SoC设计采用,它规定了AHB (Advanced High-performance Bus)、ASB (Advanced System Bus)、APB (Advanced Peripheral Bus)。AHB用于高性能、高时钟频率的系统结构,典型的应用如ARM核与系统内部的高速RAM、NAND FLASH、DMA、Bridge的连接。APB用于连接外部设备,对性能要求不高,而考虑低功耗问题。ASB是AHB的一种替代方案。
1.1 AHB总线的架构
AHB总线的强大之处在于它可以将微控制器(CPU)、高带宽的片上RAM、高带宽的外部存储器接口、DMA总线master、各种拥有AHB接口的控制器等等连接起来构成一个独立的完整的SOC系统,不仅如此,还可以通过AHB-APB桥来连接APB总线系统。AHB可以成为一个完整独立的SOC芯片的骨架。
下图是一个典型的AHB系统总线的结构示意图
1.2 AHB基本特性
- Burst传输
- Split事务处理
- 单周期master移交
- 单一时钟沿操作
- 无三态
- 更宽的数据总线配置(64/128)
- 流水线操作
- 可支持多个总线主设备(最多16个)
2. AHB总线的组成
- 主设备Master
发起一次读/写操作
某一时刻只允许一个主设备使用总线
- 从设备Slave
响应一次读/写操作
通过地址映射来选择使用哪一个从设备
- 仲裁器arbiter
允许某一个主设备控制总线
- 译码器decoder
通过地址译码决定选择哪一个从设备
- 总线可以分为三组
写数据总线(HWDATA)
读数据总线(HRDATA)
地址控制总线(HADDR)
3. 信号描述
Name | Source | To | Description |
HCLK | clock source | 各module | 总线时钟,上升沿采样 |
HRESETn | reset controller | 各module | 总线复位,低电平有效 |
HADDR[31:0] | Master | decoder mux to slave arbiter |
32位系统地址总线 |
HTRANS[1:0] | Master | mux to slave | 当前传输类型NONSEQ, SEQ, IDLE, BUSY |
HWRITE | Master | mux to slave | 1为写,0为读 |
HSIZE[2:0] | Master | mux to slave | 每一个transfer传输的数据大小,以字节为单位,最高支持1024位 |
HBURST[2:0] | Master | mux to slave | burst类型,支持4、8、16 burst,incrementing/wrapping |
HPROT[3:0] | Master | mux to slave | 保护控制信号,需要slave带保护功能,一般不用 |
HWDATA[31:0] | Master | mux to slave | 写数据总线,Master到Slave |
HRDATA[31:0] | Slave | mux to master | 读数据总线,Slave到Master |
HREADY | Slave | mux to master arbiter |
高:Slave指出传输结束 低:Slave需延长传输周期 |
HRESP[1:0] | Slave | mux to master arbiter |
Slave发给Master的总线传输状态OKAY, ERROR, RETRY, SPLIT |
HSELx | Decoder | slave | slave选择信号 |
AHB仲裁信号
Name | Source | To | Description |
HBUSREQx | Master | arbiter | master给仲裁器的请求获得总线使用权的请求信号,最多支持16个master |
HLOCKx | Master | arbiter | 如果一个master希望自己在传输期间不希望丢掉总线,则需要向仲裁器发送这个锁定信号 |
HGRANTx | arbiter | master | 授权信号,当前bus master x的优先级最高。当HREADY和HGRANTx同时为高时,master获取系统总线的权利 |
HMASTER [3:0] | arbiter | 具有split功能的slave | 仲裁器为每一个master分配的ID,指出哪个主设备正在进行传输,提供进行split的信息 |
HMASTLOCK | arbiter | 具有split功能的slave | 表示当前的master正在执行Locked操作。这个信号和HMASTER有这相同的时序 |
HSPLITx[15:0] | slave | arbiter | 从设备用这个信号告诉仲裁器哪个主设备运行重新尝试一次split传输,每一位对应一个主设备 |
4. 总线操作
有需要占用总线的Master向arbiter发出请求,arbiter授权给指定的master。任一时间周期只有一个master可以接入总线,对其指定的slave进行读写操作。
获得授权的总线开始AHB传输,首先发出地址和控制信号,提供地址信息、传输方向、带宽和burst类型。总线统一规划slave的地址,译码器根据地址和控制信号确定哪个slave与master进行数据通信。数据传输通过数据总线完成。为避免出现三态总线,AHB将读写总线分开,写数据总线用于从master到slave的数据传输,读数据总线用于从slave到master的数据传输。每笔传输包括一个地址和控制周期,一个或多个数据周期。地址和控制周期不能被扩展,因此slave必须在一个周期内采样地址信号。数据周期可以通过HREADY信号扩展,但HREADY为低时给传输加入一个等待状态以使slave获得额外的时间来提供或采样数据,另外slave通过响应信号HRESP反映传输状态。
一般情况下master完成完整的burst传输,arbiter才会授权给其他的master接入总线,然而为避免过大的判决延迟,arbiter也可能打断burst传输。在这种情况下master必须再次接入总线以进行中断的burst剩余部分的传输。
5. 基本传输
一笔传输由如下两部分组成:
地址阶段:一个周期
数据阶段:一个或多个周期,由HBURST信号决定需要几个有效周期,可以由HREADY发出请求延长一个周期。
5.1 没有等待状态的single transfer
第二个周期的上升沿,slave采样地址和控制信号,并将HREADY拉高;
如果是写操作,master会在第二个周期的上升沿传输要写入的数据;
如果是读操作,slave会在HREADY信号拉高后将读取的数据写入总线;
第三个周期的上升沿,
如果是写操作,master获取HREADY高信号,表明slave已成功接收数据,操作成功;
如果是读操作,master获取HREADY高信号,表明此时的读数据有效并且接收下来,操作成功。
需要注意,HREADY信号在数据有效期间必须为高,并且延续到第三个周期的上升沿之后,确保master的正确采样。
5.2 slave插入等待状态的single transfer
如果是写操作,master需要在等待期间保持写数据不变,直到本次传输完成;
如果是读操作,slave不需要一开始就给出数据,仅当HREADY拉高后才给出有效数据。
5.3 多个single transfer的pipeline操作
第一个周期,master发起一个操作A,并驱动地址和控制信号;
第二个周期,slave收到了来自总线的请求,将HREADY信号拉高;
第二个周期上升沿后,master发现有操作B需要执行,并且检查到上一周期的HREADY为高,则发起第二个操作B;
第三个周期,master获取HREADY信号为高,表示操作A已经完成;
第三个周期上升沿后,master发现有操作C需要执行,并且检查到上一周期的HREADY为高,则发起第三个操作C;
第三个周期上升沿后,slave由于繁忙插入了一个等待状态,将HREADY拉低;
第四个周期,master获取HREADY信号为低,知道slave希望等待,于是master保持和上一拍一样的信号;
第四个周期,slave处理完了事务,将HREADY信号拉高,表示可以继续处理;
第五个周期,master获取HREADY信号为高,知道slave已经可以处理B操作;
第五个周期上升沿后,B操作完成;
第六个周期上升沿后,C操作完成。
需要注意几点:
HREADY在一定程度上表示了slave的pipeline能力,在AHB中是2个pipe,也就是总线上最多存在2个未处理完的transfer。只有当总线上未完成的transfer少于2个时,master才能发起操作。
5.4 递增burst
T2,由于master不能在第二个周期里处理第二拍,所以master使用BUSY transfer来为自己延长一个周期的时间。注意,虽然是延长了一个周期,但是master需要给出第二个transfer的地址和控制信号;
T3,slave采集到了master发来的BUSY,知道master需要等待一拍,所以slave会忽略这个BUSY transfer;
T3,master发起了第二个transfer,因为是同一个burst的第二个transfer,所以transfer的类型是SEQ;
T5,slave将HREADY信号拉低,告诉master需要等待一个周期;
T8时刻完成最后一个transfer。
需要注意的 虽然slave会忽略掉BUSY transfer,但是master也需要给出下一拍的地址和控制信号。
5.5 wrapping 4-beat burst
5.6 递增4拍burst
6.控制信号
HTRANS[1:0] | 传输类型 | Description |
00 | IDLE | 主设备占用总线,但没进行传输 两次burst传输中间主设备可发IDLE 此时就算slave被使能,也不会从总线上获取任何的数据信号。如果此时salve被选中,那么每一个IDLE周期slave都要通过HRESP[1:0]返回一个OKAY响应 |
01 | BUSY | 主设备占用总线,但是在burst传输过程中还没有准备好进行下一次传输 一次burst传输中间主设备可发BUSY 这时slave不会从总线上收取数据而是等待,并且通过HRESP[1:0]返回一个OKAY响应。需要注意的是,这个transfer需要给出下一拍的地址和控制信号,尽管slave不会去采样。 |
10 | NONSEQ | 表明一次单个数据的传输或者一次burst传输的第一个数据 地址和控制信号与上一次传输无关 |
11 | SEQ | burst传输接下来的数据 地址和上一次传输的地址是相关的,这时总线上的控制信号应当与之前的保持一致,地址视情况递增或者回环。 |
HSIZE[2:0] | Size | Description |
000 | 8 bits | Byte |
001 | 16 bits | Halfword |
010 | 32 bits | Word |
011 | 64 bits | - |
100 | 128 bits | 4-word line |
101 | 256 bits | 8-word line |
110 | 512 bits | - |
111 | 1024 bits | - |
- Burst传输类型
burst不能超过1K地址边界。
HBURST[2:0] | 类型 | Description |
000 | SINGLE | Single transfer |
001 | INCR | Incrementing burst of unspecified length |
010 | WRAP4 | 4-beat wrapping burst |
011 | INCR4 | 4-beat increment burst |
100 | WRAP8 | 8-beat wrapping burst |
101 | INCR8 | 8-beat increment burst |
110 | WRAP16 | 16-beat wrapping burst |
111 | INCR16 | 16-beat increment burst |
- 响应信号
master发起一笔传输后,slave可以决定这笔传输的进程,而master不能取消已经发出的传输。slave通过HREADY信号反映传输是否完成,通过HRESP[1:0]反映传输的状态。
slave可以如下方式完成一笔传输:
- 立即完成一笔传输;
- 延迟一个或几个周期完成传输;
- 传输失败返回error;
- 延迟传输,释放总线。
- 传输完成HREADY
为高时传输完成,为低时传输需要延迟。
传输响应HRESP[1:0]
00: OKAY
01: ERROR
10: RETRY
传输未完成,请求主设备重新开始一个传输,arbiter会继续使用通常的优先级
11: SPLIT
传输未完成,请求主设备分离一次传输,arbiter会调整优先级方案以便其他请求总线的主设备可以访问总线
- 地址译码
地址译码器用于为总线上每个slave提供选择信号HSELx,选择信号是通过组合逻辑对地址码译码产生的。只有当前的数据传输完成后(HREADY为高),slave才会采样地址和控制信号以及HSELx。在一定条件下可能会出现这样的情况:产生HSELx信号而HREADY为低,在当前传输后slave会改变。
每个slave最小的地址空间为1KB,所有的master的burst传输上限也是1KB,如此设计保证了不会出现地址越界问题。当一个设计不会用到所有的地址空间时,可能出现访问到一个不存在的地址的情况,这就需要增加一个附加的默认slave来为上面的情况提供一个响应。当SEQ或NONSEQ传输访问到一个不存在的地址,默认slave应该提供ERROR响应;当IDLE或BUSY传输访问到一个不存在的地址,默认slave会响应OKAY。地址译码器会带有实现默认slave的功能。
- 仲裁
仲裁机制保证了任意时刻只有一个master可以接入总线。arbiter决定哪个发出接入请求的master可以接入总线,这通过优先级算法实现。AHB规范并没有给出优先级算法,设计者需要根据具体的系统要求定义。一般情况下arbiter不会中断一个burst传输,将总线接入权让给其他master。当然未定义长度的burst传输是可以打断的,这要看优先级算法是如何规定的。如果一笔burst被打断,master再度获得接入权限时,会传递剩余的部分。如一笔长度为INCR8的传输在传递3 beat后被打断,master再次获得接入授权后,会继续传输剩余的5 beat,剩余部分可以由一个SINGLE和一个INCR4组成,或者一个INCR。
HBUSREQx:master向arbiter发出接入请求的信号。
HLOCKx:指示是否要进行不可中断的传输,这一信号与HBUSREQx同时由master向arbiter发出。
HGRANTx:arbiter产生指示master获得授权,当HGRANTx信号为高同时HREADY为高时,master可以向总线传输地址信号。
HMASTER[3:0]:arbiter产生指示哪个master获得授权,这一信号用于地址控制多路来选择哪个master接入总线。
HMASTERLOCK:arbiter产生指示当前传输是否为锁定序列传输。
HSPLIT:供支持SPLIT传输使用。
七、模块接口
AHB-Master接口
AHB_Slave接口
Decoder接口
Arbiter接口