【Python 代码】生成hdf5文件

import random
from PIL import Image
import numpy as np
import os
import h5py
from PIL import Image LIST_FILE = ['list_train.txt', 'list_test.txt']######################
HDF5_LIST = 'HDF5/list_hdf5.txt'############## print '\nplease wait...' #write
Phase='TRAIN'
slice_num=100 #every 100 img form a hdf5 file if Phase=='TRAIN':
image_dir=LIST_FILE[0]
elif Phase=='TEST':
image_dir=LIST_FILE[1]
else:
print 'error!' files=[]
with open(image_dir) as f0:
for line in f0.readlines():
files.append(line[:-1]) random.shuffle(files)#随机打乱文件顺序############# sum_file=len(files) # sum of img
count_end=int(sum_file/slice_num) #num of hdf5 files:count_end+1 for count in range (count_end+1):
files_part=[]
if count==count_end:
files_part=files[count_end*slice_num:]
else:
files_part=files[count*slice_num:(count+1)*slice_num] # data :eg 1channel 96*32
datas = np.zeros((len(files_part),1, 512, 512)) ###输入tif尺寸
# label eg 1*2
labels = np.zeros((len(files_part),1,340, 340)) ####label尺寸 for ii, _file in enumerate(files_part):
train_img='./train/train_img_512/'+_file #######################
train_label='./train/train_label_crop340/'+_file ################
#print _file
datas[ii, :, :] = np.array(Image.open(train_img)).astype(np.float32) / 256
labels[ii, :, :] = \
((np.array(Image.open(train_label)).astype(np.float32) / 256)>0.5)\
.astype(np.float32)####大于0.5输出1,否则输出0 #New=Image.fromarray(labels[0][0])
#New.show() hdf5filename=Phase+'_hdf5_'+str(count)+'.h5'
with h5py.File('HDF5/'+hdf5filename, 'w') as f:
f['data'] = datas
f['label'] = labels
f.close()
#生成hdf5文件列表用于prototxt中
with open(HDF5_LIST, 'a') as f:
f.write('caffe-unet-src/cell_data/HDF5/'+hdf5filename + '\n')
f.close() print 'hdf5 file : %d'%(count+1) print '\ndone!'
上一篇:把旧系统迁移到.Net Core 2.0 日记(11) -- Authentication 认证 claimsIdentity 对比 之前的FormAuthentication


下一篇:nginx优化 突破十万并发