Largest Component Size by Common Factor (H)
题目
Given a non-empty array of unique positive integers A
, consider the following graph:
- There are
A.length
nodes, labelledA[0]
toA[A.length - 1];
- There is an edge between
A[i]
andA[j]
if and only ifA[i]
andA[j]
share a common factor greater than 1.
Return the size of the largest connected component in the graph.
Example 1:
Input: [4,6,15,35]
Output: 4
Example 2:
Input: [20,50,9,63]
Output: 2
Example 3:
Input: [2,3,6,7,4,12,21,39]
Output: 8
Note:
1 <= A.length <= 20000
1 <= A[i] <= 100000
题意
给定一串正整数,将其中具有相同因数(>=2)的整数两两相连,求这样操作后最大连通分量中结点的数量。
思路
并查集处理。对于每一个整数,找到它所有大于2的因数,将该因数和整数本身添加到一个组中。最后统计每个组中数组中整数出现的次数即可。
代码实现
Java
class Solution {
public int largestComponentSize(int[] A) {
int maxSize = 0, maxNum = 0;
// 找到最大整数
for (int num : A) {
maxNum = Math.max(maxNum, num);
}
Map<Integer, Integer> map = new HashMap<>();
int[] root = new int[maxNum + 1];
for (int i = 1; i <= maxNum; i++) {
root[i] = i;
}
for (int num : A) {
for (int i = 2; i <= (int) Math.sqrt(num); i++) {
if (num % i == 0) {
int j = num / i;
union(root, num, i);
union(root, num, j);
}
}
}
for (int num : A) {
int tmp = findRoot(root, num);
int size = map.getOrDefault(tmp, 0) + 1;
map.put(tmp, size);
maxSize = Math.max(maxSize, size);
}
return maxSize;
}
private void union(int[] root, int x, int y) {
int rootX = findRoot(root, x), rootY = findRoot(root, y);
if (rootX != rootY) {
root[rootX] = rootY;
}
}
private int findRoot(int[] root, int x) {
// 路径压缩
return root[x] == x ? x : (root[x] = findRoot(root, root[x]));
}
}