HDU 5402(Travelling Salesman Problem-构造矩阵对角最长不相交路径)

Travelling Salesman Problem

Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 898    Accepted Submission(s): 327

Special Judge

Problem Description
Teacher Mai is in a maze with
nHDU 5402(Travelling Salesman Problem-构造矩阵对角最长不相交路径)
rows and mHDU 5402(Travelling Salesman Problem-构造矩阵对角最长不相交路径)
columns. There is a non-negative number in each cell. Teacher Mai wants to walk from the top left corner
(1,1)HDU 5402(Travelling Salesman Problem-构造矩阵对角最长不相交路径)
to the bottom right corner (n,m)HDU 5402(Travelling Salesman Problem-构造矩阵对角最长不相交路径).
He can choose one direction and walk to this adjacent cell. However, he can't go out of the maze, and he can't visit a cell more than once.



Teacher Mai wants to maximize the sum of numbers in his path. And you need to print this path.
 
Input
There are multiple test cases.



For each test case, the first line contains two numbers
n,m(1≤n,m≤100,n∗m≥2)HDU 5402(Travelling Salesman Problem-构造矩阵对角最长不相交路径).



In following nHDU 5402(Travelling Salesman Problem-构造矩阵对角最长不相交路径)
lines, each line contains mHDU 5402(Travelling Salesman Problem-构造矩阵对角最长不相交路径)
numbers. The jHDU 5402(Travelling Salesman Problem-构造矩阵对角最长不相交路径)-th
number in the iHDU 5402(Travelling Salesman Problem-构造矩阵对角最长不相交路径)-th
line means the number in the cell (i,j)HDU 5402(Travelling Salesman Problem-构造矩阵对角最长不相交路径).
Every number in the cell is not more than 10HDU 5402(Travelling Salesman Problem-构造矩阵对角最长不相交路径)4HDU 5402(Travelling Salesman Problem-构造矩阵对角最长不相交路径)HDU 5402(Travelling Salesman Problem-构造矩阵对角最长不相交路径).
 
Output
For each test case, in the first line, you should print the maximum sum.



In the next line you should print a string consisting of "L","R","U" and "D", which represents the path you find. If you are in the cell
(x,y)HDU 5402(Travelling Salesman Problem-构造矩阵对角最长不相交路径),
"L" means you walk to cell (x,y−1)HDU 5402(Travelling Salesman Problem-构造矩阵对角最长不相交路径),
"R" means you walk to cell (x,y+1)HDU 5402(Travelling Salesman Problem-构造矩阵对角最长不相交路径),
"U" means you walk to cell (x−1,y)HDU 5402(Travelling Salesman Problem-构造矩阵对角最长不相交路径),
"D" means you walk to cell (x+1,y)HDU 5402(Travelling Salesman Problem-构造矩阵对角最长不相交路径).
 
Sample Input
3 3
2 3 3
3 3 3
3 3 2
 
Sample Output
25
RRDLLDRR
 
Author
xudyh
 
Source
 
Recommend
wange2014   |   We have carefully selected several similar problems for you:  

pid=5421" target="_blank">5421

 

pid=5420" target="_blank">5420

 5419 5418 

pid=5417" target="_blank">5417

 
 

当n,m有一个奇数时,‘S形’可全取。

否则至少要少取一个,

假设少取(mx,my) ,当mx+my为偶数时,必定有一个与(mx,my)相邻的不能取

否则必能全取剩下的。(‘S形’+特判2行‘长城形’)

#include<bits/stdc++.h>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (100+10)
typedef long long ll;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return (a-b+llabs(a-b)/F*F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
int n,m;
ll a[MAXN][MAXN];
int main()
{
// freopen("Travelling.in","r",stdin); while(cin>>n>>m) {
ll sum=0,mi=INF;int mx,my;
For(i,n) For(j,m) {
scanf("%lld",&a[i][j]),sum+=a[i][j];
if (mi>a[i][j]&&(i+j)%2==1)
mi=min(mi,a[i][j]),mx=i,my=j;
}
if (n%2==0&&m%2==0)
{
cout<<sum-mi<<endl; if (mx%2==1) {
For(i,mx-1)
{
if (i&1) {For(j,m-1) putchar('R');}
else {For(j,m-1) putchar('L'); }
if (i<n) putchar('D');
} int tx=mx,ty=1;
int p=0;
For(j,m)
{
if (my==j) {if (j<m) putchar('R');continue;}
if (p==0) printf("D");
else printf("U");
p^=1;
if (j<m) putchar('R');
}
Fork(i,mx+2,n)
{
putchar('D');
if ((i&1)^1) {For(j,m-1) putchar('R');}
else {For(j,m-1) putchar('L'); }
}
} if (my%2==1) {
For(i,my-1)
{
if (i&1) {For(j,n-1) putchar('D'); }
else {For(j,n-1) putchar('U'); }
if (i<m) putchar('R');
} int tx=1,ty=my;
int p=0;
For(j,n)
{
if (mx==j) {if (j<n) putchar('D');continue;}
if (p==0) printf("R");
else printf("L");
p^=1;
if (j<n) putchar('D');
} Fork(i,my+2,m)
{
putchar('R');
if ((i&1)^1) {For(j,n-1) putchar('D'); }
else {For(j,n-1) putchar('U'); }
}
} }
else {
cout<<sum<<endl;
if (n%2) {
For(i,n)
{
if (i&1) {For(j,m-1) putchar('R');}
else {For(j,m-1) putchar('L'); }
if (i<n) putchar('D');
}
} else {
For(i,m)
{
if (i&1) {For(j,n-1) putchar('D'); }
else {For(j,n-1) putchar('U'); }
if (i<m) putchar('R');
}
}
}
cout<<endl;
} return 0;
}
上一篇:REPLACE...IN.....WITH.... 的使用


下一篇:Python批量修改文件名