https://www.cnblogs.com/xingshansi/p/6777945.html
python绘制三维图
作者:桂。
时间:2017-04-27 23:24:55
链接:http://www.cnblogs.com/xingshansi/p/6777945.html
本文仅仅梳理最基本的绘图方法。
一、初始化
假设已经安装了matplotlib工具包。
利用matplotlib.figure.Figure创建一个图框:
1
2
3
4
|
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot( 111 , projection = '3d' )
|
二、直线绘制(Line plots)
基本用法:
1
|
ax.plot(x,y,z,label = ' ' )
|
code:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
mpl.rcParams[ 'legend.fontsize' ] = 10
fig = plt.figure()
ax = fig.gca(projection = '3d' )
theta = np.linspace( - 4 * np.pi, 4 * np.pi, 100 )
z = np.linspace( - 2 , 2 , 100 )
r = z * * 2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)
ax.plot(x, y, z, label = 'parametric curve' )
ax.legend() plt.show() |
三、散点绘制(Scatter plots)
基本用法:
1
|
ax.scatter(xs, ys, zs, s = 20 , c = None , depthshade = True , * args, * kwargs)
|
- xs,ys,zs:输入数据;
- s:scatter点的尺寸
- c:颜色,如c = 'r'就是红色;
- depthshase:透明化,True为透明,默认为True,False为不透明
- *args等为扩展变量,如maker = 'o',则scatter结果为’o‘的形状
code:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
def randrange(n, vmin, vmax):
'''
Helper function to make an array of random numbers having shape (n, )
with each number distributed Uniform(vmin, vmax).
'''
return (vmax - vmin) * np.random.rand(n) + vmin
fig = plt.figure()
ax = fig.add_subplot( 111 , projection = '3d' )
n = 100
# For each set of style and range settings, plot n random points in the box # defined by x in [23, 32], y in [0, 100], z in [zlow, zhigh]. for c, m, zlow, zhigh in [( 'r' , 'o' , - 50 , - 25 ), ( 'b' , '^' , - 30 , - 5 )]:
xs = randrange(n, 23 , 32 )
ys = randrange(n, 0 , 100 )
zs = randrange(n, zlow, zhigh)
ax.scatter(xs, ys, zs, c = c, marker = m)
ax.set_xlabel( 'X Label' )
ax.set_ylabel( 'Y Label' )
ax.set_zlabel( 'Z Label' )
plt.show() |
四、线框图(Wireframe plots)
基本用法:
1
|
ax.plot_wireframe(X, Y, Z, * args, * * kwargs)
|
- X,Y,Z:输入数据
- rstride:行步长
- cstride:列步长
- rcount:行数上限
- ccount:列数上限
code:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot( 111 , projection = '3d' )
# Grab some test data. X, Y, Z = axes3d.get_test_data( 0.05 )
# Plot a basic wireframe. ax.plot_wireframe(X, Y, Z, rstride = 10 , cstride = 10 )
plt.show() |
五、表面图(Surface plots)
基本用法:
1
|
ax.plot_surface(X, Y, Z, * args, * * kwargs)
|
- X,Y,Z:数据
- rstride、cstride、rcount、ccount:同Wireframe plots定义
- color:表面颜色
- cmap:图层
code:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import numpy as np
fig = plt.figure()
ax = fig.gca(projection = '3d' )
# Make data. X = np.arange( - 5 , 5 , 0.25 )
Y = np.arange( - 5 , 5 , 0.25 )
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X * * 2 + Y * * 2 )
Z = np.sin(R)
# Plot the surface. surf = ax.plot_surface(X, Y, Z, cmap = cm.coolwarm,
linewidth = 0 , antialiased = False )
# Customize the z axis. ax.set_zlim( - 1.01 , 1.01 )
ax.zaxis.set_major_locator(LinearLocator( 10 ))
ax.zaxis.set_major_formatter(FormatStrFormatter( '%.02f' ))
# Add a color bar which maps values to colors. fig.colorbar(surf, shrink = 0.5 , aspect = 5 )
plt.show() |
六、三角表面图(Tri-Surface plots)
基本用法:
1
|
ax.plot_trisurf( * args, * * kwargs)
|
- X,Y,Z:数据
- 其他参数类似surface-plot
code:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
n_radii = 8
n_angles = 36
# Make radii and angles spaces (radius r=0 omitted to eliminate duplication). radii = np.linspace( 0.125 , 1.0 , n_radii)
angles = np.linspace( 0 , 2 * np.pi, n_angles, endpoint = False )
# Repeat all angles for each radius. angles = np.repeat(angles[..., np.newaxis], n_radii, axis = 1 )
# Convert polar (radii, angles) coords to cartesian (x, y) coords. # (0, 0) is manually added at this stage, so there will be no duplicate # points in the (x, y) plane. x = np.append( 0 , (radii * np.cos(angles)).flatten())
y = np.append( 0 , (radii * np.sin(angles)).flatten())
# Compute z to make the pringle surface. z = np.sin( - x * y)
fig = plt.figure()
ax = fig.gca(projection = '3d' )
ax.plot_trisurf(x, y, z, linewidth = 0.2 , antialiased = True )
plt.show() |
七、等高线(Contour plots)
基本用法:
1
|
ax.contour(X, Y, Z, * args, * * kwargs)
|
code:
1
2
3
4
5
6
7
8
9
10
11
|
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import cm
fig = plt.figure()
ax = fig.add_subplot( 111 , projection = '3d' )
X, Y, Z = axes3d.get_test_data( 0.05 )
cset = ax.contour(X, Y, Z, cmap = cm.coolwarm)
ax.clabel(cset, fontsize = 9 , inline = 1 )
plt.show() |
二维的等高线,同样可以配合三维表面图一起绘制:
code:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
from mpl_toolkits.mplot3d import axes3d
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import cm
fig = plt.figure()
ax = fig.gca(projection = '3d' )
X, Y, Z = axes3d.get_test_data( 0.05 )
ax.plot_surface(X, Y, Z, rstride = 8 , cstride = 8 , alpha = 0.3 )
cset = ax.contour(X, Y, Z, zdir = 'z' , offset = - 100 , cmap = cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir = 'x' , offset = - 40 , cmap = cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir = 'y' , offset = 40 , cmap = cm.coolwarm)
ax.set_xlabel( 'X' )
ax.set_xlim( - 40 , 40 )
ax.set_ylabel( 'Y' )
ax.set_ylim( - 40 , 40 )
ax.set_zlabel( 'Z' )
ax.set_zlim( - 100 , 100 )
plt.show() |
也可以是三维等高线在二维平面的投影:
code:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import cm
fig = plt.figure()
ax = fig.gca(projection = '3d' )
X, Y, Z = axes3d.get_test_data( 0.05 )
ax.plot_surface(X, Y, Z, rstride = 8 , cstride = 8 , alpha = 0.3 )
cset = ax.contourf(X, Y, Z, zdir = 'z' , offset = - 100 , cmap = cm.coolwarm)
cset = ax.contourf(X, Y, Z, zdir = 'x' , offset = - 40 , cmap = cm.coolwarm)
cset = ax.contourf(X, Y, Z, zdir = 'y' , offset = 40 , cmap = cm.coolwarm)
ax.set_xlabel( 'X' )
ax.set_xlim( - 40 , 40 )
ax.set_ylabel( 'Y' )
ax.set_ylim( - 40 , 40 )
ax.set_zlabel( 'Z' )
ax.set_zlim( - 100 , 100 )
plt.show() |
八、Bar plots(条形图)
基本用法:
1
|
ax.bar(left, height, zs = 0 , zdir = 'z' , * args, * * kwargs
|
- x,y,zs = z,数据
- zdir:条形图平面化的方向,具体可以对应代码理解。
code:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure()
ax = fig.add_subplot( 111 , projection = '3d' )
for c, z in zip ([ 'r' , 'g' , 'b' , 'y' ], [ 30 , 20 , 10 , 0 ]):
xs = np.arange( 20 )
ys = np.random.rand( 20 )
# You can provide either a single color or an array. To demonstrate this,
# the first bar of each set will be colored cyan.
cs = [c] * len (xs)
cs[ 0 ] = 'c'
ax.bar(xs, ys, zs = z, zdir = 'y' , color = cs, alpha = 0.8 )
ax.set_xlabel( 'X' )
ax.set_ylabel( 'Y' )
ax.set_zlabel( 'Z' )
plt.show() |
九、子图绘制(subplot)
A-不同的2-D图形,分布在3-D空间,其实就是投影空间不空,对应code:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.gca(projection = '3d' )
# Plot a sin curve using the x and y axes. x = np.linspace( 0 , 1 , 100 )
y = np.sin(x * 2 * np.pi) / 2 + 0.5
ax.plot(x, y, zs = 0 , zdir = 'z' , label = 'curve in (x,y)' )
# Plot scatterplot data (20 2D points per colour) on the x and z axes. colors = ( 'r' , 'g' , 'b' , 'k' )
x = np.random.sample( 20 * len (colors))
y = np.random.sample( 20 * len (colors))
c_list = []
for c in colors:
c_list.append([c] * 20 )
# By using zdir='y', the y value of these points is fixed to the zs value 0 # and the (x,y) points are plotted on the x and z axes. ax.scatter(x, y, zs = 0 , zdir = 'y' , c = c_list, label = 'points in (x,z)' )
# Make legend, set axes limits and labels ax.legend() ax.set_xlim( 0 , 1 )
ax.set_ylim( 0 , 1 )
ax.set_zlim( 0 , 1 )
ax.set_xlabel( 'X' )
ax.set_ylabel( 'Y' )
ax.set_zlabel( 'Z' )
|
B-子图Subplot用法
与MATLAB不同的是,如果一个四子图效果,如:
MATLAB:
123subplot(
2
,
2
,
1
)
subplot(
2
,
2
,
2
)
subplot(
2
,
2
,[
3
,
4
])
Python:
123subplot(
2
,
2
,
1
)
subplot(
2
,
2
,
2
)
subplot(
2
,
1
,
2
)
code:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
|
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.axes3d import Axes3D, get_test_data
from matplotlib import cm
import numpy as np
# set up a figure twice as wide as it is tall fig = plt.figure(figsize = plt.figaspect( 0.5 ))
#=============== # First subplot #=============== # set up the axes for the first plot ax = fig.add_subplot( 2 , 2 , 1 , projection = '3d' )
# plot a 3D surface like in the example mplot3d/surface3d_demo X = np.arange( - 5 , 5 , 0.25 )
Y = np.arange( - 5 , 5 , 0.25 )
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X * * 2 + Y * * 2 )
Z = np.sin(R)
surf = ax.plot_surface(X, Y, Z, rstride = 1 , cstride = 1 , cmap = cm.coolwarm,
linewidth = 0 , antialiased = False )
ax.set_zlim( - 1.01 , 1.01 )
fig.colorbar(surf, shrink = 0.5 , aspect = 10 )
#=============== # Second subplot #=============== # set up the axes for the second plot ax = fig.add_subplot( 2 , 1 , 2 , projection = '3d' )
# plot a 3D wireframe like in the example mplot3d/wire3d_demo X, Y, Z = get_test_data( 0.05 )
ax.plot_wireframe(X, Y, Z, rstride = 10 , cstride = 10 )
plt.show() |
补充:
文本注释的基本用法:
code:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.gca(projection = '3d' )
# Demo 1: zdir zdirs = ( None , 'x' , 'y' , 'z' , ( 1 , 1 , 0 ), ( 1 , 1 , 1 ))
xs = ( 1 , 4 , 4 , 9 , 4 , 1 )
ys = ( 2 , 5 , 8 , 10 , 1 , 2 )
zs = ( 10 , 3 , 8 , 9 , 1 , 8 )
for zdir, x, y, z in zip (zdirs, xs, ys, zs):
label = '(%d, %d, %d), dir=%s' % (x, y, z, zdir)
ax.text(x, y, z, label, zdir)
# Demo 2: color ax.text( 9 , 0 , 0 , "red" , color = 'red' )
# Demo 3: text2D # Placement 0, 0 would be the bottom left, 1, 1 would be the top right. ax.text2D( 0.05 , 0.95 , "2D Text" , transform = ax.transAxes)
# Tweaking display region and labels ax.set_xlim( 0 , 10 )
ax.set_ylim( 0 , 10 )
ax.set_zlim( 0 , 10 )
ax.set_xlabel( 'X axis' )
ax.set_ylabel( 'Y axis' )
ax.set_zlabel( 'Z axis' )
plt.show() |
参考: