Codeforces Round #262 (Div. 2) 1004
D. Little Victor and Set
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output
Little Victor adores the sets theory. Let us remind you that a set is a group of numbers where all numbers are pairwise distinct. Today Victor wants to find a set of integers S that has the following properties:
-
for all x
the following inequality holds l ≤ x ≤ r;
1 ≤ |S| ≤ k;
-
lets denote the i-th element of the set S as si; value
must be as small as possible.
Help Victor find the described set.
Input
The first line contains three space-separated integers l, r, k (1 ≤ l ≤ r ≤ 1012; 1 ≤ k ≤ min(106, r - l + 1)).
Output
Print the minimum possible value of f(S). Then print the cardinality of set |S|. Then print the elements of the set in any order.
If there are multiple optimal sets, you can print any of them.
Sample test(s)
input
8 15 3
output
1
2
10 11
input
8 30 7
output
0
5
14 9 28 11 16
Note
Operation
represents the operation of bitwise exclusive OR. In other words, it is the XOR operation.
【分析】很显然的结论,K^(K+1)=1,其中K是偶数。当K>3时,我们可以选连续的4个自然数使异或和为0。(当然注意要特判R-L+1的大小)。当K=1时,就是L。当K=2时,显然只能构造异或为1的情况。
所有的推论都指向一个问题:当K=3的一般情况怎么做?
【题解】对于那个情况,我一直觉得能贪心构造,但是怎么也想不出简单易行且效率高的算法。
其实很简单。我们设L<=X<Y<Z<=R,然后来贪心构造他们。
在二进制中,异或和为0的情况是1,1,0或0,0,0。显然Z的第一位是1,然后X和Y是0。
因为是贪心,我们要尽量使Y靠近Z(因为如果Z符合范围,Y显然越大越好)。
那么第二位我们就让Y靠近Z。我们把Z那位设成0,X和Y都设成1,即如下形式:
110000000
101111111
011111111
wa了很多次,
1.没有用long long
2.只有l^(l+1) l为偶数时,才能异或值为1
3.当k>=4但是不存在4个数异或为0的时候,没考虑3个也可能为0
4.1<<35超过int 得写成(long long)1<<35
5.当2个异或不是1时,应该判断他的值和l的大小
#include <cstring> #include <iostream> #include <algorithm> #include <cstdio> #include <cmath> #include <map> #include <cstdlib> #define M(a,b) memset(a,b,sizeof(a)) #define INF 0x3f3f3f3f using namespace std; long long l,r,k; int main() { scanf("%I64d%I64d%I64d",&l,&r,&k); if(k==) printf("%I64d\n1\n%I64d\n",l,l); else if(k==) { if(l%==) printf("1\n2\n%I64d %I64d\n",l,l+); else if(l+<=r) printf("1\n2\n%I64d %I64d\n",l+,l+); else if(((l)^(l+))<l) { //cout<<(((l)^(l+1))-l)<<endl; printf("%I64d\n2\n%I64d %I64d\n",(l)^(l+),l,l+); } else printf("%I64d\n1\n%I64d\n",l,l); } else if(k>=) { if(l%==) printf("0\n4\n%I64d %I64d %I64d %I64d\n",l,l+,l+,l+); else if(l+<r) printf("0\n4\n%I64d %I64d %I64d %I64d\n",l+,l+,l+,l+); else if(((l)^(l+)^(l+)^(l+))==)printf("0\n4\n%I64d %I64d %I64d %I64d\n",l,l+,l+,l+); else { int count1 = ; long long tem1 = r; while(tem1>) { tem1 = tem1>>; count1++; } //cout<<count1<<endl; int cnt = ; long long ans1 = ; long long ans2 = ; for(int i = count1-;i>=;i--) { if(((r>>i)&)==) { if(cnt == ) { ans1 = ans1|((long long)<<i); cnt++; } else if(cnt >= ) { ans2 = ans2|((long long)<<i); cnt++; } } else { if(cnt>) { ans1 = ans1|((long long)<<i); ans2 = ans2|((long long)<<i); } } } if(ans2<l) { if(l%==) printf("1\n2\n%I64d %I64d\n",l,l+); else printf("1\n2\n%I64d %I64d\n",l+,l+); } else printf("0\n3\n%I64d %I64d %I64d\n",ans1,ans2,r); } } else { int count1 = ; long long tem1 = r; while(tem1>) { tem1 = tem1>>; count1++; } //cout<<count1<<endl; int cnt = ; long long ans1 = ; long long ans2 = ; for(int i = count1-;i>=;i--) { if(((r>>i)&)==) { if(cnt == ) { ans1 = ans1|((long long)<<i); cnt++; } else if(cnt >= ) { ans2 = ans2|((long long)<<i); cnt++; } } else { if(cnt>) { ans1 = ans1|((long long)<<i); ans2 = ans2|((long long)<<i); } } //cout<<ans2<<' '<<ans1<<endl; } //cout<<ans2<<' '<<ans1<<endl; if(ans2<l) { if(l%==) printf("1\n2\n%I64d %I64d\n",l,l+); else printf("1\n2\n%I64d %I64d\n",l+,l+); } else printf("0\n3\n%I64d %I64d %I64d\n",ans1,ans2,r); } return ; }