Dynamic seq2seq in tensorflow

v1.0中 tensorflow渐渐废弃了老的非dynamic的seq2seq接口,已经放到 tf.contrib.legacy_seq2seq目录下面。

tf.contrib.seq2seq下面的实现都是dynamic seq2seq接口。

按照google的rd说法下个月将会给出更加完善的接口和实现。

当前版本也可以使用这里尝试分析一下现有dynamic seq2seq的代码。

 
 

首先核心函数是seq2seq.py下面的 dynamic_rnn_decoder

 
 

这里首先看下dynamic的概念,即不需要确定的输入长度,以及batch 大小,
都可以动态。

但是注意首先每个batch对应所有样本的输入长度还是需要一样的
作为dense数据
否则
不可处理

 
 

这也就是说如果你需要特别在意速度的话,即使使用dyanmic 也可能还需要使用bucket来聚集相似长度的

输入样本作为一个batch 加速训练。

不过一般意义上不用的话,代码比较简单,加上dyanmic的seq2seq 性能也可以接受,同时好处是每个batch

的样本可以完全随机。

 
 

dynamic_rnn_decoder核心是内部调用raw_rnn来实现迭代过程,这里的dynamic最主要体现在输入的

decoder_fn函数上面。

 
 

这个函数允许计算提前终止(early stop) 也就是说
假如你做inference,不用dynamic seq2seq

你一般的做法是指定一个
最大decode长度
比如20, 那么对应所有样本其实都需要decode走完20个

Step 哪怕所有的样本对应输出序列长度都不大于10。

 
 

而有了dynamic decode 当一个batch 所有的样本decode到达
类似<END>结束符之后,整个decode过程就

结束了。

 
 

但是注意这里仍然是以batch为基础的,也就是说有一个样本比如decode 2次就到达结束符,但是由于

组内其它样本没有结束,仍然需要所有样本继续向后解析,也就是说batch size越大,结束的可能越晚。

 
 

dynamic_rnn_decoder有train和inference两种模式,不过如果不使用attention,个人感觉train的时候直接

用dynamic_rnn接口就可以了。

 
 

最后按照刚刚master的代码,seq2seq提供了decoder.py以及sampling_decoder.py等相关的示例,

这个接口更加简洁清晰,也就是说不再用context_state来记录用户其余的状态,而是用户自定义

output的结构
将其它信息也直接写入output。

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmimmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

上一篇:通过来模仿稀土掘金个人页面的布局来学习使用CoordinatorLayout


下一篇:python杂乱有关类与对象