1 简介
2 部分代码
% clc; clear; close all; %% Problem Definition model=CreateModel(); model.n=8; % number of Handle Points ??????? CostFunction=@(x) MyCost(x,model); % Cost Function ????,@(x)????? ??????x nVar=model.n; % Number of Decision Variables ????? VarSize=[1 nVar]; % Size of Decision Variables Matrix ????????? %%X??Y??????? VarMin.x=model.xmin; % Lower Bound of Variables VarMax.x=model.xmax; % Upper Bound of Variables VarMin.y=model.ymin; % Lower Bound of Variables VarMax.y=model.ymax; % Upper Bound of Variables VarMin.z=model.zmin; VarMax.z=model.zmax; %% PSO?????? %% PSO Parameters MaxIt=100; % Maximum Number of Iterations ?????? nPop=50; % Population Size (Swarm Size) ????? % w=1; % Inertia Weight ???? % wdamp=0.98; % Inertia Weight Damping Ratio ??????? wmax=0.9; wmin=0.4; w=wmax; Lam = 20; c1=1.5; % Personal Learning Coefficient ?????? c2=1.5; % Global Learning Coefficient ?????? % % Constriction Coefficient % phi1=2.05; % phi2=2.05; % phi=phi1+phi2; % chi=2/(phi-2+sqrt(phi^2-4*phi)); % w=chi; % Inertia Weight % wdamp=1; % Inertia Weight Damping Ratio % c1=chi*phi1; % Personal Learning Coefficient % c2=chi*phi2; % Global Learning Coefficient %%X??Y??????? alpha=0.1; VelMax.x=alpha*(VarMax.x-VarMin.x); % Maximum Velocity VelMin.x=-VelMax.x; % Minimum Velocity VelMax.y=alpha*(VarMax.y-VarMin.y); % Maximum Velocity VelMin.y=-VelMax.y; % Minimum Velocity VelMax.z=alpha*(VarMax.z-VarMin.z); VelMin.z=-VelMax.z; %% Initialization ??? % Create Empty Particle Structure ?????,?????????????????????????????????? empty_particle.Position=[]; empty_particle.Velocity=[]; empty_particle.Cost=[]; empty_particle.Sol=[];%solution 瑙? empty_particle.Best.Position=[]; empty_particle.Best.Cost=[]; empty_particle.Best.Sol=[]; % Initialize Global Best ?????????,???? GlobalBest.Cost=inf; % Create Particles Matrix ??????? particle=repmat(empty_particle,nPop,1); %???????????? empty_particle ? nPop?1 ?? %% %[empty_particle %. %. %. %empty_particle] %% % Initialization Loop ???????? for i=1:nPop % Initialize Position ???????? if i > 1 particle(i).Position=CreateRandomSolution(model); else % Straight line from source to destination ??????????? xx = linspace(model.xs, model.xt, model.n+2); yy = linspace(model.ys, model.yt, model.n+2); zz = linspace(model.zs, model.zt, model.n+2); particle(i).Position.x = xx(2:end-1); particle(i).Position.y = yy(2:end-1); particle(i).Position.z = zz(2:end-1); end % Initialize Velocity ???????? particle(i).Velocity.x=zeros(VarSize); particle(i).Velocity.y=zeros(VarSize); particle(i).Velocity.z=zeros(VarSize); % Evaluation ????????? [particle(i).Cost, particle(i).Sol]=CostFunction(particle(i).Position); % Update Personal Best ???????? particle(i).Best.Position=particle(i).Position; particle(i).Best.Cost=particle(i).Cost; particle(i).Best.Sol=particle(i).Sol; % Update Global Best ???????? if particle(i).Best.Cost<GlobalBest.Cost GlobalBest=particle(i).Best; end end % Array to Hold Best Cost Values at Each Iteration ?????????????? BestCost=zeros(MaxIt,1); %% PSO Main Loop PSO?????? for it=1:MaxIt for i=1:nPop % x Part x??? % Update Velocity ???? rand(VarSize)????VarSize*VarSize??? particle(i).Velocity.x = w*particle(i).Velocity.x ... + c1*rand(VarSize).*(particle(i).Best.Position.x-particle(i).Position.x) ... + c2*rand(VarSize).*(GlobalBest.Position.x-particle(i).Position.x); % Update Velocity Bounds ??????,?????,???????????? particle(i).Velocity.x = max(particle(i).Velocity.x,VelMin.x); particle(i).Velocity.x = min(particle(i).Velocity.x,VelMax.x); % Update Position ???? particle(i).Position.x = particle(i).Position.x + particle(i).Velocity.x; % Velocity Mirroring ???? OutOfTheRange=(particle(i).Position.x<VarMin.x | particle(i).Position.x>VarMax.x); particle(i).Velocity.x(OutOfTheRange)=-particle(i).Velocity.x(OutOfTheRange); % Update Position Bounds ?????? particle(i).Position.x = max(particle(i).Position.x,VarMin.x); particle(i).Position.x = min(particle(i).Position.x,VarMax.x); % y Part Y??? % Update Velocity ???? particle(i).Velocity.y = w*particle(i).Velocity.y ... + c1*rand(VarSize).*(particle(i).Best.Position.y-particle(i).Position.y) ... + c2*rand(VarSize).*(GlobalBest.Position.y-particle(i).Position.y); % Update Velocity Bounds ?????? particle(i).Velocity.y = max(particle(i).Velocity.y,VelMin.y); particle(i).Velocity.y = min(particle(i).Velocity.y,VelMax.y); % Update Position ???? particle(i).Position.y = particle(i).Position.y + particle(i).Velocity.y; % Velocity Mirroring ???? OutOfTheRange=(particle(i).Position.y<VarMin.y | particle(i).Position.y>VarMax.y); particle(i).Velocity.y(OutOfTheRange)=-particle(i).Velocity.y(OutOfTheRange); % Update Position Bounds ?????? particle(i).Position.y = max(particle(i).Position.y,VarMin.y); particle(i).Position.y = min(particle(i).Position.y,VarMax.y); % z Part % Update Velocity ???? rand(VarSize)????VarSize*VarSize??? particle(i).Velocity.z = w*particle(i).Velocity.z ... + c1*rand(VarSize).*(particle(i).Best.Position.z-particle(i).Position.z) ... + c2*rand(VarSize).*(GlobalBest.Position.z-particle(i).Position.z); % Update Velocity Bounds ??????,?????,???????????? particle(i).Velocity.z = max(particle(i).Velocity.z,VelMin.z); particle(i).Velocity.z = min(particle(i).Velocity.z,VelMax.z); % Update Position ???? particle(i).Position.z = particle(i).Position.z + particle(i).Velocity.z; % Velocity Mirroring ???? OutOfTheRange=(particle(i).Position.z<VarMin.z | particle(i).Position.z>VarMax.z); particle(i).Velocity.z(OutOfTheRange)=-particle(i).Velocity.z(OutOfTheRange); % Update Position Bounds ?????? particle(i).Position.z = max(particle(i).Position.z,VarMin.z); particle(i).Position.z = min(particle(i).Position.z,VarMax.z); % Evaluation ???? [particle(i).Cost, particle(i).Sol]=CostFunction(particle(i).Position); % Update Personal Best ???????? if particle(i).Cost<particle(i).Best.Cost particle(i).Best.Position=particle(i).Position; particle(i).Best.Cost=particle(i).Cost; particle(i).Best.Sol=particle(i).Sol; % Update Global Best ???????? if particle(i).Best.Cost<GlobalBest.Cost GlobalBest=particle(i).Best; end end %CM cm = tan(pi*(rand(1)-0.5)); particlenew(i).Position.x=particle(i).Position.x+cm*(particle(i).Position.x-GlobalBest.Position.x); particlenew(i).Position.y=particle(i).Position.y+cm*(particle(i).Position.y-GlobalBest.Position.y); particlenew(i).Position.z=particle(i).Position.z+cm*(particle(i).Position.z-GlobalBest.Position.z); [particlenew(i).Cost, particlenew(i).Sol]=CostFunction(particlenew(i).Position); if particlenew(i).Cost < particle(i).Cost particle(i).Position = particlenew(i).Position end end % Update Best Cost Ever Found ??????????? BestCost(it)=GlobalBest.Cost; % Inertia Weight Damping ??????? % w=w*wdamp; w=(wmax-wmin)*exp(-(((MaxIt-it)/MaxIt)*Lam)^2)+wmin; % Show Iteration Information ?????? if GlobalBest.Sol.IsFeasible %??????? Flag=' *'; else Flag=[', Violation = ' num2str(GlobalBest.Sol.Violation)]; %Violation ?? ;num2str?????????,???????fprintf?disp?????? end disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCost(it)) Flag]); % Plot Solution figure(1); %?????????? PlotSolution(GlobalBest.Sol,model); pause(0.1); end %% Results ?? figure; %plot(BestCost,'LineWidth',2); plot(BestCost,'r--','LineWidth',2); hold on; %plot(BestCost2,'r--','linewidth',2) xlabel('Iteration'); ylabel('Best Cost'); grid on; %grid????????????,grid on?????,grid off?????
3 仿真结果
4 参考文献
-
O. Wilson, E., Sociobiology: The New Synthesis. 1976.
-
J Matari’c, M. and A. *s, Interaction and Intelligent Behavior. 1999.
-
Trelea, I.C., The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters, 2003. 85(6): p. 317-325.
-
Kennedy, J. and R. Eberhart. Particle swarm optimization. in Proceedings of ICNN’95 - International Conference on Neural Networks. 1995.
-
Zhan, Z., et al. Adaptive control of acceleration coefficients for particle swarm optimization based on clustering analysis. in 2007 IEEE Congress on Evolutionary Computation. 2007.