There are n
gas stations along a circular route, where the amount of gas at the ith
station is gas[i]
.
You have a car with an unlimited gas tank and it costs cost[i]
of gas to travel from the ith
station to its next (i + 1)th
station. You begin the journey with an empty tank at one of the gas stations.
Given two integer arrays gas
and cost
, return the starting gas station's index if you can travel around the circuit once in the clockwise direction, otherwise return -1
. If there exists a solution, it is guaranteed to be unique
Example 1:
Input: gas = [1,2,3,4,5], cost = [3,4,5,1,2]
Output: 3
Explanation:
Start at station 3 (index 3) and fill up with 4 unit of gas. Your tank = 0 + 4 = 4
Travel to station 4. Your tank = 4 - 1 + 5 = 8
Travel to station 0. Your tank = 8 - 2 + 1 = 7
Travel to station 1. Your tank = 7 - 3 + 2 = 6
Travel to station 2. Your tank = 6 - 4 + 3 = 5
Travel to station 3. The cost is 5. Your gas is just enough to travel back to station 3.
Therefore, return 3 as the starting index.
Example 2:
Input: gas = [2,3,4], cost = [3,4,3]
Output: -1
Explanation:
You can't start at station 0 or 1, as there is not enough gas to travel to the next station.
Let's start at station 2 and fill up with 4 unit of gas. Your tank = 0 + 4 = 4
Travel to station 0. Your tank = 4 - 3 + 2 = 3
Travel to station 1. Your tank = 3 - 3 + 3 = 3
You cannot travel back to station 2, as it requires 4 unit of gas but you only have 3.
Therefore, you can't travel around the circuit once no matter where you start.
Constraints:
gas.length == n
cost.length == n
1 <= n <= 105
-
0 <= gas[i], cost[i] <= 104
这道题需要求一个起始的站点k,从而保证从k站点开始,能够循环一圈的遍历所有station。这里有两点很直接的point:
1、如果当前station的 cost>gas那么铁定不能将该站点作为起始站点。
2、如果所有站点都能遍历一遍,那么gas的累加和一定是大于等于cost的累加和。
对于这道题我首先想到了一个简单的方法,循环遍历数组,让每一个站点k作为起始站点试一遍,然后判断能否跑到下一个站点,如果全部遍历一遍都可以则输出k,否则选择下一个站点k+1作为起始,重复操作。很明显这样有两层循环,时间复杂度为o(n^2),直觉告诉我铁定不能oc。。。。
class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
// 暴力发就是每个gas station 进行检索一次
int n=gas.size();
int len=2*n-1;
int index=0;
int flag=1;
while(index<n){
int res=0;
flag=1;
for(int i=index;i<=len;++i){
res=res-cost[i%n]+gas[i%n];
if(res<0) {
flag=0;
break;
}
}
if(flag) break;
index++;
}
return flag==1? index:-1;
}
};
倒在最后一个超长的test了。
那么如何优化呢,o(n^2)的复杂度指定不行的。后面看了大佬的代码才恍然大悟。
class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
// 暴力发就是每个gas station 进行检索一次
int tot_gas=0,cur_gas=0,k=0;
for(int i=0;i<gas.size();++i){
tot_gas+=gas[i]-cost[i];
cur_gas+=gas[i]-cost[i];
if(cur_gas<0){
cur_gas=0;
k=i+1; //这行代码很关键
}
}
return tot_gas>=0? k:-1;
}
};
这里维护 tank 总的 tot_gas,以及当前 tank 的 cur_gas,更新方式基本相同 tot_gas+=gas[i]-cost[i];,但注意一点,当 cur_gas<0 时表明汽车无法到达该station,同时也表明从上一个起点 k 到当前的 station i 之间的任何 station 都无法作为起点进行循环,下一个起点得是 k=i+1(very important)。
为啥呢,假设从 起点 k=0 开始,当从 station i-1=》station i 时 cur_gas[i]<0 , 可以证明从 station 0~i, 这些结点都无法作为起点。我的思考如下:
1. cur_gas[i]<0 ,可以得到 对于当前 station i :cost[i]>gas[i],station i 无法作为起点。
2.假设能从 station 0到 station i-1,可以得到从 station 0作为起始的cur_gas[i-1] 一定是大于以station i-1 作为起始的cur_gas[i-1], 因为前面能到达的话,会累加很多之前正的cur_gas,这样就可以证明,如果从station 0都无法到达station i=》从 station i-1 也无法到达 station i 。所以无论以 0~i 哪个station 作为起点,计算得到的cur_gas[i] 都必将为为负值
3.则下一个起点必然是station i+1
4.最后判断一下tot_gas, 如果能够循环检索,必然总的tot_gas为正值。
该代码直接复杂度直接为o(n),贼牛逼。