求三维偏序
设三维为a,b,c。先对a排序,这样i的偏序就只能<i。
然而排序的时候需要三个维度都判断一遍,最后还要去重,不然会出现实际应该记答案的数出现在它后面的情况。
(排序用的函数里不要写类似于<=之类的东西啊..会出奇奇怪怪的问题的(RE))
然后分治来做,我们在做区间[l,r]的时候,先去做[l,m]和[m+1,r]
之后左区间[l,m],右区间[m+1,r]都已经按照b排好序了,而且左右两区间内部的答案已经统计过了,所以现在只要考虑左区间中满足(右区间的数)的数量就好了。
那么就也把[l,r]按照b排好序,在排的时候再用一个权值树状数组维护c,
也就是,如果这个点是左区间的点,就把它的c值对应的树状数组中+=这个点的重复数(刚才去重了)
如果这个点是右区间的点,就询问树状数组中<=它的c值的数量,然后加到这个点的答案里。
而且每次做的时候树状数组都要清空,但不能用memset来清,复杂度有问题。(一直迷信memset的速度,结果一查告诉我也就比循环清快一倍??)
所以只要把刚才加过的再减回去就可以了。
复杂度$O(n*log_2n*log_2k)$
也可以cdq套cdq,然后不用树状数组,复杂度是一样的。
这样一直套下去,k维的话复杂度也就是$O(n*log^{k-1}_2n)$啦
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#include<cmath>
#include<ctime>
#define LL long long int
#define inf 0x3f3f3f3f
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int maxn=,maxk=; LL rd(){
LL x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} struct Node{
int a,b,c,i;
}inp[maxn],num[maxn],tmp[maxn];
int iniN,N,K;
int tr[maxk],cnt[maxn],siz[maxn],ans[maxn]; inline bool cmp(Node a,Node b){return a.a==b.a?(a.b==b.b?a.c<b.c:a.b<b.b):a.a<b.a;} inline void add(int x,int y){
while(x&&x<=K) tr[x]+=y,x+=lowbit(x);
}
inline int query(int x){
int re=;while(x) re+=tr[x],x-=lowbit(x);return re;
} void cdq(int l,int r){
int m=l+r>>,p=l,q=m+,t=;
if(l>=r) return;
cdq(l,m);cdq(m+,r);
while(p<=m&&q<=r){
if(num[p].b<=num[q].b){
tmp[++t]=num[p];add(num[p].c,siz[num[p].i]);p++;
}else{
tmp[++t]=num[q];cnt[num[q].i]+=query(num[q].c);q++;
}
} while(q<=r){
tmp[++t]=num[q];cnt[num[q].i]+=query(num[q].c);q++;
}for(int i=l;i<p;i++) add(num[i].c,-siz[num[i].i]);
while(p<=m) tmp[++t]=num[p++]; memcpy(num+l,tmp+,sizeof(Node)*t);
} int main(){
int i,j,k;
iniN=N=rd();K=rd();
for(i=;i<=N;i++){
int a=rd(),b=rd(),c=rd();
inp[i].a=a;inp[i].b=b;inp[i].c=c;num[i].i=i;
}
sort(inp+,inp+N+,cmp);//printf("ll");
for(i=,j=;i<=N;i++){
if(inp[i].a==inp[i-].a&&inp[i].b==inp[i-].b&&inp[i].c==inp[i-].c) inp[i].i=j,cnt[j]++,siz[j]++;
else{
inp[i].i=++j;num[j]=inp[i];siz[j]=;
}
}N=j;
cdq(,N);
for(i=;i<=N;i++) ans[cnt[i]]+=siz[i];
for(i=;i<iniN;i++) printf("%d\n",ans[i]);
return ;
}