动态规划——最长公共子序列(LCS)

/**
* @brief longest common subsequence(LCS)
* @author An
* @data 2013.8.26
**/ #include <iostream>
#include <string>
using namespace std; enum Direction { Zero, LeftUp, Up, Left };
static int m; // length of the first sequence
static int n; // length of the second sequence
static int **c; // the length for every subsequence
static Direction **b; // record the path void LCS_Length( string x, string y );
void Print_LCS( string x, int i, int j );
void PrintTable(); int main()
{
string x = "ABCBDAB";
string y = "BDCABA";
LCS_Length( x, y );
Print_LCS( x, m, n );
cout << endl;
PrintTable();
} void LCS_Length( string x, string y )
{
// initialize two tables
m = x.length();
n = y.length();
c = new int*[m + 1];
b = new Direction*[m + 1];
for ( int i = 0; i <= m; ++i )
{
c[i] = new int[n + 1];
b[i] = new Direction[n + 1];
} // zero row and column
for ( int i = 0; i <= m; ++i )
{
c[i][0] = 0;
b[i][0] = Zero;
}
for ( int j = 1; j <= n; ++j )
{
c[0][j] = 0;
b[0][j] = Zero;
} // calculate the two tables from bottom to top
for ( int i = 1; i <= m; ++i )
{
for ( int j = 1; j <= n; ++j )
{
if ( x[i - 1] == y[j - 1] )
{
c[i][j] = c[i - 1][j - 1] + 1;
b[i][j] = LeftUp;
}
else if ( c[i - 1][j] >= c[i][j - 1] )
{
c[i][j] = c[i - 1][j];
b[i][j] = Up;
}
else
{
c[i][j] = c[i][j - 1];
b[i][j] = Left;
}
} // end for
} //end for } // end LCS_Length() void Print_LCS( string x, int i, int j )
{
if ( i == 0 || j == 0 )
{
return;
}
if ( b[i][j] == LeftUp )
{
Print_LCS( x, i - 1, j - 1 );
cout << x[i - 1];
}
else if ( b[i][j] == Up )
{
Print_LCS( x, i - 1, j );
}
else
{
Print_LCS( x, i, j - 1 );
}
} void PrintTable()
{
for ( int i = 0; i <= m; ++i )
{
for ( int j = 0; j <= n; ++j )
{
cout << c[i][j] << " ";
}
cout << endl;
}
cout << endl;
for ( int i = 0; i <= m; ++i )
{
for ( int j = 0; j <= n; ++j )
{
cout << b[i][j] << " ";
}
cout << endl;
}
}
上一篇:HDU - 3035 War(对偶图求最小割+最短路)


下一篇:YaHoo 前端优化军规