大数据集群环境搭建之一 hadoop-ha高可用安装

1、如果你使用root用户进行安装。 vi /etc/profile 即可 系统变量

2、如果你使用普通用户进行安装。 vi ~/.bashrc 用户变量

export HADOOP_HOME=/export/servers/hadoop-2.8.5

export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:

同步配置文件

[root@jiang01 servers]# vi /etc/profile

[root@jiang01 servers]#

[root@jiang01 servers]# xrsync.sh /etc/profile

=========== jiang02 : /etc/profile ===========

命令执行成功

=========== jiang03 : /etc/profile ===========

命令执行成功

[root@jiang01 servers]#

刷新配置各个机器配置:

source /etc/profile

修改下面各个配置文件:

大数据集群环境搭建之一 hadoop-ha高可用安装
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License. See accompanying LICENSE file.
-->

<!-- Put site-specific property overrides in this file. -->

<configuration>
        <!-- 指定hdfs的nameservice为ns1 -->
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://myha01/</value>
    </property>
        <!-- 指定hadoop临时目录 -->
    <property>
        <name>hadoop.tmp.dir</name>
        <value>/export/servers/hadoop-2.8.5/hadoopDatas/tempDatas</value>
    </property>
        <!-- 指定zookeeper地址 -->
    <property>
        <name>ha.zookeeper.quorum</name>
        <value>jiang01:2181,jiang02:2181,jiang03:2181</value>
    </property>
</configuration>
core-site.xml 大数据集群环境搭建之一 hadoop-ha高可用安装
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License. See accompanying LICENSE file.
-->

<!-- Put site-specific property overrides in this file. -->

<configuration>
    <!--指定hdfs的nameservice为ns1,需要和core-site.xml中的保持一致 -->
    <property>
        <name>dfs.nameservices</name>
        <value>myha01</value>
    </property>
    <!-- ns1下面有两个NameNode,分别是nn1,nn2 -->
    <property>
        <name>dfs.ha.namenodes.myha01</name>
        <value>nn1,nn2</value>
    </property>
    <!-- nn1的RPC通信地址 -->
    <property>
        <name>dfs.namenode.rpc-address.myha01.nn1</name>
        <value>jiang01:9000</value>
    </property>
    <!-- nn1的http通信地址 -->
    <property>
        <name>dfs.namenode.http-address.myha01.nn1</name>
        <value>jiang01:50070</value>
    </property>
    <!-- nn2的RPC通信地址 -->
    <property>
        <name>dfs.namenode.rpc-address.myha01.nn2</name>
        <value>jiang02:9000</value>
    </property>
    <!-- nn2的http通信地址 -->
    <property>
        <name>dfs.namenode.http-address.myha01.nn2</name>
        <value>jiang02:50070</value>
    </property>
    <!-- 指定NameNode的元数据在JournalNode上的存放位置 -->
    <property>
        <name>dfs.namenode.shared.edits.dir</name>
        <value>qjournal://jiang01:8485;jiang02:8485;jiang03:8485/myha01</value>
    </property>
    <!-- 指定JournalNode在本地磁盘存放数据的位置 -->
    <property>
        <name>dfs.journalnode.edits.dir</name>
        <value>/opt/hadoop-2.8.5/journal</value>
    </property>
    <!-- 开启NameNode失败自动切换 -->
    <property>
        <name>dfs.ha.automatic-failover.enabled</name>
        <value>true</value>
    </property>
    <!-- 配置失败自动切换实现方式 -->
    <property>
        <name>dfs.client.failover.proxy.provider.myha01</name>
        <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
    </property>
    <!-- 配置隔离机制 -->
    <property>
        <name>dfs.ha.fencing.methods</name>
        <value>sshfence</value>
    </property>
    <!-- 使用隔离机制时需要ssh免登陆 -->
    <property>
        <name>dfs.ha.fencing.ssh.private-key-files</name>
        <value>/root/.ssh/id_dsa</value>
    </property>
</configuration>
hdfs-site.xml 大数据集群环境搭建之一 hadoop-ha高可用安装
<?xml version="1.0"?>
<!--
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License. See accompanying LICENSE file.
-->
<configuration>
   <!-- Site specific YARN configuration properties -->
<!-- 开启RM高可靠 -->
        <property>
            <name>yarn.resourcemanager.ha.enabled</name>
            <value>true</value>
        </property>
        <!-- 指定RM的cluster id -->
        <property>
            <name>yarn.resourcemanager.cluster-id</name>
            <value>yrc</value>
        </property>
        <!-- 指定RM的名字 -->
        <property>
            <name>yarn.resourcemanager.ha.rm-ids</name>
            <value>rm1,rm2</value>
        </property>
        <!-- 分别指定RM的地址 -->
        <property>
            <name>yarn.resourcemanager.hostname.rm1</name>
            <value>jiang02</value>
        </property>
        <property>
            <name>yarn.resourcemanager.hostname.rm2</name>
            <value>jiang03</value>
        </property>
        <!-- 指定zk集群地址 -->
        <property>
            <name>yarn.resourcemanager.zk-address</name>
            <value>jiang01:2181,jiang02:2181,jiang03:2181</value>
        </property>
        <property>
            <name>yarn.nodemanager.aux-services</name>
            <value>mapreduce_shuffle</value>
        </property>
</configuration>
yarn-site.xml 大数据集群环境搭建之一 hadoop-ha高可用安装
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License. See accompanying LICENSE file.
-->

<!-- Put site-specific property overrides in this file. -->

<configuration>
         <!-- 指定mr框架为yarn方式 -->
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
</configuration>
mapred-site.xml 大数据集群环境搭建之一 hadoop-ha高可用安装
[root@jiang01 servers]#  hadoop version
Hadoop 2.8.5
Subversion https://git-wip-us.apache.org/repos/asf/hadoop.git -r 0b8464d75227fcee2c6e7f2410377b3d53d3d5f8
Compiled by jdu on 2018-09-10T03:32Z
Compiled with protoc 2.5.0
From source with checksum 9942ca5c745417c14e318835f420733
This command was run using /export/servers/hadoop-2.8.5/share/hadoop/common/hadoop-common-2.8.5.jar
[root@jiang01 servers]#
查看hadoop版本

启动zk

大数据集群环境搭建之一 hadoop-ha高可用安装
[root@jiang01 servers]# 
[root@jiang01 servers]# xcall.sh jps -l
============= jiang01 : jps -l ============
10262 org.apache.zookeeper.server.quorum.QuorumPeerMain
10571 sun.tools.jps.Jps
命令执行成功
============= jiang02 : jps -l ============
10162 sun.tools.jps.Jps
9991 org.apache.zookeeper.server.quorum.QuorumPeerMain
命令执行成功
============= jiang03 : jps -l ============
2275 org.apache.zookeeper.server.quorum.QuorumPeerMain
2436 sun.tools.jps.Jps
命令执行成功
[root@jiang01 servers]# xcall.sh zkServer.sh status
============= jiang01 : zkServer.sh status ============
ZooKeeper JMX enabled by default
Using config: /export/servers/zookeeper-3.4.14/bin/../conf/zoo.cfg
Mode: follower
命令执行成功
============= jiang02 : zkServer.sh status ============
ZooKeeper JMX enabled by default
Using config: /export/servers/zookeeper-3.4.14/bin/../conf/zoo.cfg
Mode: leader
命令执行成功
============= jiang03 : zkServer.sh status ============
ZooKeeper JMX enabled by default
Using config: /export/servers/zookeeper-3.4.14/bin/../conf/zoo.cfg
Mode: follower
命令执行成功
[root@jiang01 servers]#
启动zk

在你配置的各个journalnode节点启动该进程

大数据集群环境搭建之一 hadoop-ha高可用安装
[root@jiang01 servers]# 
[root@jiang01 servers]# xcall.sh hadoop-daemon.sh start journalnode
============= jiang01 : hadoop-daemon.sh start journalnode ============
starting journalnode, logging to /export/servers/hadoop-2.8.5/logs/hadoop-root-journalnode-jiang01.out
命令执行成功
============= jiang02 : hadoop-daemon.sh start journalnode ============
starting journalnode, logging to /export/servers/hadoop-2.8.5/logs/hadoop-root-journalnode-jiang02.out
命令执行成功
============= jiang03 : hadoop-daemon.sh start journalnode ============
starting journalnode, logging to /export/servers/hadoop-2.8.5/logs/hadoop-root-journalnode-jiang03.out
命令执行成功
[root@jiang01 servers]#
启动journalnode

大数据集群环境搭建之一 hadoop-ha高可用安装

 

 

 先选取一个namenode(jiang01)节点进行格式化

大数据集群环境搭建之一 hadoop-ha高可用安装
[root@jiang01 servers]# hadoop namenode -format
View Code

大数据集群环境搭建之一 hadoop-ha高可用安装

 

 

 

格式化zkfc,只能在nameonde节点进行

主节点上面启动 dfs文件系统:

[root@jiang01 dfs]# start-dfs.sh

大数据集群环境搭建之一 hadoop-ha高可用安装

 

 

 jiang002启动yarm

大数据集群环境搭建之一 hadoop-ha高可用安装
[root@jiang02 mapreduce]# start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /export/servers/hadoop-2.8.5/logs/yarn-root-resourcemanager-jiang02.out
jiang03: starting nodemanager, logging to /export/servers/hadoop-2.8.5/logs/yarn-root-nodemanager-jiang03.out
jiang01: starting nodemanager, logging to /export/servers/hadoop-2.8.5/logs/yarn-root-nodemanager-jiang01.out
jiang02: starting nodemanager, logging to /export/servers/hadoop-2.8.5/logs/yarn-root-nodemanager-jiang02.out
[root@jiang02 mapreduce]# 
View Code

jiang03启动:resourcemanager

大数据集群环境搭建之一 hadoop-ha高可用安装
[root@jiang03 hadoopDatas]#  yarn-daemon.sh start resourcemanager
starting resourcemanager, logging to /export/servers/hadoop-2.8.5/logs/yarn-root-resourcemanager-jiang03.out
View Code

hadoop wordcount程序启动:

1  cd /export/servers/hadoop-2.8.5/share/hadoop/mapreduce/

2 生成数据文件:

touch word.txt
echo "hello world" >> word.txt
echo "hello hadoop" >> word.txt
echo "hello hive" >> word.txt

3 创建hadoop 文件目录

hdfs dfs -mkdir -p /work/data/input

4 向hadoop上传数据文件

hdfs dfs -put ./word.txt /work/data/input

5 计算例子

hadoop jar hadoop-mapreduce-examples-2.8.5.jar wordcount /work/data/input /work/data/output

6 查看结果:

大数据集群环境搭建之一 hadoop-ha高可用安装
[root@jiang01 mapreduce]# hadoop jar hadoop-mapreduce-examples-2.8.5.jar wordcount /work/data/input /work/data/output
19/10/09 11:44:48 INFO input.FileInputFormat: Total input files to process : 1
19/10/09 11:44:48 INFO mapreduce.JobSubmitter: number of splits:1
19/10/09 11:44:48 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1570635804389_0001
19/10/09 11:44:48 INFO impl.YarnClientImpl: Submitted application application_1570635804389_0001
19/10/09 11:44:48 INFO mapreduce.Job: The url to track the job: http://jiang02:8088/proxy/application_1570635804389_0001/
19/10/09 11:44:48 INFO mapreduce.Job: Running job: job_1570635804389_0001
19/10/09 11:45:00 INFO mapreduce.Job: Job job_1570635804389_0001 running in uber mode : false
19/10/09 11:45:00 INFO mapreduce.Job:  map 0% reduce 0%
19/10/09 11:45:11 INFO mapreduce.Job:  map 100% reduce 0%
19/10/09 11:45:20 INFO mapreduce.Job:  map 100% reduce 100%
19/10/09 11:45:20 INFO mapreduce.Job: Job job_1570635804389_0001 completed successfully
19/10/09 11:45:21 INFO mapreduce.Job: Counters: 49
        File System Counters
                FILE: Number of bytes read=54
                FILE: Number of bytes written=321397
                FILE: Number of read operations=0
                FILE: Number of large read operations=0
                FILE: Number of write operations=0
                HDFS: Number of bytes read=139
                HDFS: Number of bytes written=32
                HDFS: Number of read operations=6
                HDFS: Number of large read operations=0
                HDFS: Number of write operations=2
        Job Counters 
                Launched map tasks=1
                Launched reduce tasks=1
                Data-local map tasks=1
                Total time spent by all maps in occupied slots (ms)=8790
                Total time spent by all reduces in occupied slots (ms)=6229
                Total time spent by all map tasks (ms)=8790
                Total time spent by all reduce tasks (ms)=6229
                Total vcore-milliseconds taken by all map tasks=8790
                Total vcore-milliseconds taken by all reduce tasks=6229
                Total megabyte-milliseconds taken by all map tasks=9000960
                Total megabyte-milliseconds taken by all reduce tasks=6378496
        Map-Reduce Framework
                Map input records=3
                Map output records=6
                Map output bytes=60
                Map output materialized bytes=54
                Input split bytes=103
                Combine input records=6
                Combine output records=4
                Reduce input groups=4
                Reduce shuffle bytes=54
                Reduce input records=4
                Reduce output records=4
                Spilled Records=8
                Shuffled Maps =1
                Failed Shuffles=0
                Merged Map outputs=1
                GC time elapsed (ms)=199
                CPU time spent (ms)=1320
                Physical memory (bytes) snapshot=325742592
                Virtual memory (bytes) snapshot=4161085440
                Total committed heap usage (bytes)=198316032
        Shuffle Errors
                BAD_ID=0
                CONNECTION=0
                IO_ERROR=0
                WRONG_LENGTH=0
                WRONG_MAP=0
                WRONG_REDUCE=0
        File Input Format Counters 
                Bytes Read=36
        File Output Format Counters 
                Bytes Written=32
View Code

大数据集群环境搭建之一 hadoop-ha高可用安装

 

上一篇:温柔一刀,优雅且彻底地卸载Rancher HA


下一篇:Hadoop HA集群简单搭建