【深度学习】BP反向传播算法Python简单实现

转载:火烫火烫的

个人觉得BP反向传播是深度学习的一个基础,所以很有必要把反向传播算法好好学一下
得益于一步一步弄懂反向传播的例子这篇文章,给出一个例子来说明反向传播
不过是英文的,如果你感觉不好阅读的话,优秀的国人已经把它翻译出来了。
一步一步弄懂反向传播的例子(中文翻译)

【深度学习】BP反向传播算法Python简单实现

然后我使用了那个博客的图片。这次的目的主要是对那个博客的一个补充。但是首先我觉得先用面向过程的思想来实现一遍感觉会好一点。

随便把文中省略的公式给大家给写出来。大家可以先看那篇博文

【深度学习】BP反向传播算法Python简单实现

 import numpy as np

 # "pd" 偏导
def sigmoid(x):
return 1 / (1 + np.exp(-x)) def sigmoidDerivationx(y):
return y * (1 - y) if __name__ == "__main__":
#初始化
bias = [0.35, 0.60]
weight = [0.15, 0.2, 0.25, 0.3, 0.4, 0.45, 0.5, 0.55]
output_layer_weights = [0.4, 0.45, 0.5, 0.55]
i1 = 0.05
i2 = 0.10
target1 = 0.01
target2 = 0.99
alpha = 0.5 #学习速率
numIter = 10000 #迭代次数
for i in range(numIter):
#正向传播
neth1 = i1*weight[1-1] + i2*weight[2-1] + bias[0]
neth2 = i1*weight[3-1] + i2*weight[4-1] + bias[0]
outh1 = sigmoid(neth1)
outh2 = sigmoid(neth2)
neto1 = outh1*weight[5-1] + outh2*weight[6-1] + bias[1]
neto2 = outh2*weight[7-1] + outh2*weight[8-1] + bias[1]
outo1 = sigmoid(neto1)
outo2 = sigmoid(neto2)
print(str(i) + ", target1 : " + str(target1-outo1) + ", target2 : " + str(target2-outo2))
if i == numIter-1:
print("lastst result : " + str(outo1) + " " + str(outo2))
#反向传播
#计算w5-w8(输出层权重)的误差
pdEOuto1 = - (target1 - outo1)
pdOuto1Neto1 = sigmoidDerivationx(outo1)
pdNeto1W5 = outh1
pdEW5 = pdEOuto1 * pdOuto1Neto1 * pdNeto1W5
pdNeto1W6 = outh2
pdEW6 = pdEOuto1 * pdOuto1Neto1 * pdNeto1W6
pdEOuto2 = - (target2 - outo2)
pdOuto2Neto2 = sigmoidDerivationx(outo2)
pdNeto1W7 = outh1
pdEW7 = pdEOuto2 * pdOuto2Neto2 * pdNeto1W7
pdNeto1W8 = outh2
pdEW8 = pdEOuto2 * pdOuto2Neto2 * pdNeto1W8 # 计算w1-w4(输出层权重)的误差
pdEOuto1 = - (target1 - outo1) #之前算过
pdEOuto2 = - (target2 - outo2) #之前算过
pdOuto1Neto1 = sigmoidDerivationx(outo1) #之前算过
pdOuto2Neto2 = sigmoidDerivationx(outo2) #之前算过
pdNeto1Outh1 = weight[5-1]
pdNeto2Outh2 = weight[7-1] pdEOuth1 = pdEOuto1 * pdOuto1Neto1 * pdNeto1Outh1 + pdEOuto2 * pdOuto2Neto2 * pdNeto1Outh1
pdOuth1Neth1 = sigmoidDerivationx(outh1)
pdNeth1W1 = i1
pdNeth1W2 = i2
pdEW1 = pdEOuth1 * pdOuth1Neth1 * pdNeth1W1
pdEW2 = pdEOuth1 * pdOuth1Neth1 * pdNeth1W2
pdNeto1Outh2 = weight[6-1]
pdNeto2Outh2 = weight[8-1]
pdOuth2Neth2 = sigmoidDerivationx(outh2)
pdNeth2W3 = i1
pdNeth2W4 = i2
pdEOuth2 = pdEOuto1 * pdOuto1Neto1 * pdNeto1Outh2 + pdEOuto2 * pdOuto2Neto2 * pdNeto2Outh2
pdEW3 = pdEOuth2 * pdOuth2Neth2 * pdNeth2W3
pdEW4 = pdEOuth2 * pdOuth2Neth2 * pdNeth2W4
#权重更新
weight[1-1] = weight[1-1] - alpha * pdEW1
weight[2-1] = weight[2-1] - alpha * pdEW2
weight[3-1] = weight[3-1] - alpha * pdEW3
weight[4-1] = weight[4-1] - alpha * pdEW4
weight[5-1] = weight[5-1] - alpha * pdEW5
weight[6-1] = weight[6-1] - alpha * pdEW6
weight[7-1] = weight[7-1] - alpha * pdEW7
weight[8-1] = weight[8-1] - alpha * pdEW8
# print(weight[1-1])
# print(weight[2-1])
# print(weight[3-1])
# print(weight[4-1])
# print(weight[5-1])
# print(weight[6-1])
# print(weight[7-1])
# print(weight[8-1])

不知道你是否对此感到熟悉一点了呢?反正我按照公式实现一遍之后深有体会,然后用向量的又写了一次代码。
接下来我们要用向量来存储这些权重,输出结果等,因为如果我们不这样做,你看上面的例子就知道我们需要写很多w1,w2等,这要是参数一多就很可怕。
这些格式我是参考吴恩达的格式,相关课程资料->吴恩达深度学习视频

【深度学习】BP反向传播算法Python简单实现

 import numpy as np

 def sigmoid(x):
return 1 / (1 + np.exp(-x))
def sigmoidDerivationx(y):
return y * (1 - y) if __name__ == '__main__':
# 初始化一些参数
alpha = 0.5
numIter = 1000000 #迭代次数
w1 = [[0.15, 0.20], [0.25, 0.30]] # Weight of input layer
w2 = [[0.40, 0.45], [0.50, 0.55]]
# print(np.array(w2).T)
b1 = 0.35
b2 = 0.60
x = [0.05, 0.10]
y = [0.01, 0.99]
# 前向传播
z1 = np.dot(w1, x) + b1 # dot函数是常规的矩阵相乘
a1 = sigmoid(z1) z2 = np.dot(w2, a1) + b2
a2 = sigmoid(z2)
for n in range(numIter):
# 反向传播 使用代价函数为C=1 / (2n) * sum[(y-a2)^2]
# 分为两次
# 一次是最后一层对前面一层的错误 delta2 = np.multiply(-(y-a2), np.multiply(a2, 1-a2))
# for i in range(len(w2)):
# print(w2[i] - alpha * delta2[i] * a1)
#计算非最后一层的错误
# print(delta2)
delta1 = np.multiply(np.dot(np.array(w2).T, delta2), np.multiply(a1, 1-a1))
# print(delta1)
# for i in range(len(w1)):
# print(w1[i] - alpha * delta1[i] * np.array(x))
#更新权重
for i in range(len(w2)):
w2[i] = w2[i] - alpha * delta2[i] * a1
for i in range(len(w1)):
w1[i] = w1[i] - alpha * delta1[i] * np.array(x)
#继续前向传播,算出误差值
z1 = np.dot(w1, x) + b1
a1 = sigmoid(z1)
z2 = np.dot(w2, a1) + b2
a2 = sigmoid(z2)
print(str(n) + " result:" + str(a2[0]) + ", result:" +str(a2[1]))
# print(str(n) + " error1:" + str(y[0] - a2[0]) + ", error2:" +str(y[1] - a2[1]))

可以看到,用向量来表示的话代码就简短了非常多。但是用了向量化等的方法,如果不太熟,去看吴恩达深度学习的第一部分,再返过来看就能懂了。

上一篇:maven intall在target文件夹中自动生成的war包部署服务器时缺斤少两


下一篇:BP反向传播算法的工作原理How the backpropagation algorithm works