Hashtable源码解析

Hashtable同样是基于哈希表实现的,同样每个元素是一个key-value对,其内部也是通过单链表解决冲突问题,容量不足(超过了阀值)时,同样会自动增长。

Hashtable也是JDK1.0引入的类,是线程安全的,能用于多线程环境中。

Hashtable同样实现了Serializable接口,它支持序列化,实现了Cloneable接口,能被克隆。

package java.util;

import java.io.*;
import java.util.concurrent.ThreadLocalRandom;
import java.util.function.BiConsumer;
import java.util.function.Function;
import java.util.function.BiFunction;
import sun.misc.SharedSecrets; /**
* Hashtable同样是基于哈希表实现的,同样每个元素是一个key-value对,其内部也是通过单链表解决冲突问题,容量不足(超过了阀值)时,同样会自动增长。
*
* Hashtable也是JDK1.0引入的类,是线程安全的,能用于多线程环境中。
*
Hashtable同样实现了Serializable接口,它支持序列化,实现了Cloneable接口,能被克隆。
*/
public class Hashtable<K,V>
extends Dictionary<K,V>
implements Map<K,V>, Cloneable, java.io.Serializable { /**
* 保存key-value的数组。
* Hashtable同样采用单链表解决冲突,每一个Entry本质上是一个单向链表
*/
private transient Entry<?,?>[] table; /**
* Hashtable中键值对的数量/个数
*/
private transient int count; /**
* 阈值,用于判断是否需要调整Hashtable的容量(threshold = 容量*加载因子)
* @serial
*/
private int threshold; /**
* 加载因子
*
* @serial
*/
private float loadFactor; /**
* Hashtable被改变的次数,用于fail-fast机制的实现
*/
private transient int modCount = 0; /** 序列版本号 */
private static final long serialVersionUID = 1421746759512286392L; /**
* 指定“容量大小”和“加载因子”的构造函数
* MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8
* @param initialCapacity the initial capacity of the hashtable.
* @param loadFactor the load factor of the hashtable.
* @exception IllegalArgumentException if the initial capacity is less
* than zero, or if the load factor is nonpositive.
*/
public Hashtable(int initialCapacity, float loadFactor) {
//如果指定参数初始化容量小于0,抛出异常
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
//如果指定参数负载因子为非正数,抛出异常
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal Load: "+loadFactor);
//初始化hashtable的loadFactor、table、threshold属性
if (initialCapacity==0)
initialCapacity = 1;
this.loadFactor = loadFactor;
table = new Entry<?,?>[initialCapacity];
threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
} /**
* 指定“容量大小”的构造函数
* 默认加载引资为0.75f
* @param initialCapacity the initial capacity of the hashtable.
* @exception IllegalArgumentException if the initial capacity is less
* than zero.
*/
public Hashtable(int initialCapacity) {
this(initialCapacity, 0.75f);
} /**
* 默认构造函数。
*/
public Hashtable() {
// 默认构造函数,指定的容量大小是11;加载因子是0.75
this(11, 0.75f);
} /**
* 包含“子Map”的构造函数
* @param t the map whose mappings are to be placed in this map.
* @throws NullPointerException if the specified map is null.
* @since 1.2
*/
public Hashtable(Map<? extends K, ? extends V> t) {
//初始hashMap
this(Math.max(2*t.size(), 11), 0.75f);
// 将“子Map”的全部元素都添加到Hashtable中
putAll(t);
} /**
* 返回hashtable大小
*/
public synchronized int size() {
return count;
} /**
* 判断hashtable是否是空的
*/
public synchronized boolean isEmpty() {
return count == 0;
} /**
* 返回key的枚举对象
* @return an enumeration of the keys in this hashtable.
* @see Enumeration
* @see #elements()
* @see #keySet()
* @see Map
*/
public synchronized Enumeration<K> keys() {
return this.<K>getEnumeration(KEYS);
} /**
* 返回value的枚举对象
* @return an enumeration of the values in this hashtable.
* @see java.util.Enumeration
* @see #keys()
* @see #values()
* @see Map
*/
public synchronized Enumeration<V> elements() {
return this.<V>getEnumeration(VALUES);
} /**
* 判断Hashtable是否包含“值(value)”
* @param value a value to search for
* @return <code>true</code> if and only if some key maps to the
* <code>value</code> argument in this hashtable as
* determined by the <tt>equals</tt> method;
* <code>false</code> otherwise.
* @exception NullPointerException if the value is <code>null</code>
*/
public synchronized boolean contains(Object value) {
//注意,Hashtable中的value不能是null,
// 若是null的话,抛出异常!
if (value == null) {
throw new NullPointerException();
} // 从后向前遍历table数组中的元素(Entry)
// 对于每个Entry(单向链表),逐个遍历,判断节点的值是否等于value
Entry<?,?> tab[] = table;
for (int i = tab.length ; i-- > 0 ;) {
for (Entry<?,?> e = tab[i] ; e != null ; e = e.next) {
if (e.value.equals(value)) {
return true;
}
}
}
return false;
} /**
*是否包含有指定参数value
* @param value value whose presence in this hashtable is to be tested
* @return <tt>true</tt> if this map maps one or more keys to the
* specified value
* @throws NullPointerException if the value is <code>null</code>
* @since 1.2
*/
public boolean containsValue(Object value) {
return contains(value);
} /**
*判断hashtable中是否包含key
*
* @param key possible key
* @return <code>true</code> if and only if the specified object
* is a key in this hashtable, as determined by the
* <tt>equals</tt> method; <code>false</code> otherwise.
* @throws NullPointerException if the key is <code>null</code>
* @see #contains(Object)
*/
public synchronized boolean containsKey(Object key) {
Entry<?,?> tab[] = table;
//计算hash值,直接用key的hashCode代替
int hash = key.hashCode();
// 计算在数组中的索引值
int index = (hash & 0x7FFFFFFF) % tab.length;
// 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素
for (Entry<?,?> e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return true;
}
}
return false;
} /**
* 返回key对应的value,没有的话返回null
* @param key the key whose associated value is to be returned
* @return the value to which the specified key is mapped, or
* {@code null} if this map contains no mapping for the key
* @throws NullPointerException if the specified key is null
* @see #put(Object, Object)
*/
@SuppressWarnings("unchecked")
public synchronized V get(Object key) {
Entry<?,?> tab[] = table;
//计算hash值,直接用key的hashCode代替
int hash = key.hashCode();
// 计算在数组中的索引值
int index = (hash & 0x7FFFFFFF) % tab.length;
// 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素
for (Entry<?,?> e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
//返回该key对应的value的值
return (V)e.value;
}
}
//找不到返回null
return null;
} /**
* The maximum size of array to allocate.
* Some VMs reserve some header words in an array.
* Attempts to allocate larger arrays may result in
* OutOfMemoryError: Requested array size exceeds VM limit
*/
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /**
* Increases the capacity of and internally reorganizes this
* hashtable, in order to accommodate and access its entries more
* efficiently. This method is called automatically when the
* number of keys in the hashtable exceeds this hashtable's capacity
* and load factor.
* 调整Hashtable的长度,将长度变成原来的2倍+1
*/
@SuppressWarnings("unchecked")
protected void rehash() {
//记录旧容量
int oldCapacity = table.length;
//记录旧桶的数组
Entry<?,?>[] oldMap = table; // overflow-conscious code
//创建新容量大小的Entry数组
int newCapacity = (oldCapacity << 1) + 1;
//不能大于MAX_ARRAY_SIZE
//MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8
if (newCapacity - MAX_ARRAY_SIZE > 0) {
//如果原来容量已经是MAX_ARRAY_SIZE大小,就不进行扩容
if (oldCapacity == MAX_ARRAY_SIZE)
// Keep running with MAX_ARRAY_SIZE buckets
return;
//如果旧容量不为MAX_ARRAY_SIZE,新容量变为MAX_ARRAY_SIZE
newCapacity = MAX_ARRAY_SIZE;
}
//创建新的数组,容量为新容量
Entry<?,?>[] newMap = new Entry<?,?>[newCapacity];
//结构性修改次数+1
modCount++;
//计算扩容的临界值
threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
table = newMap;
//将“旧的Hashtable”中的元素复制到“新的Hashtable”中
for (int i = oldCapacity ; i-- > 0 ;) {
for (Entry<K,V> old = (Entry<K,V>)oldMap[i] ; old != null ; ) {
Entry<K,V> e = old;
old = old.next; int index = (e.hash & 0x7FFFFFFF) % newCapacity;
e.next = (Entry<K,V>)newMap[index];
newMap[index] = e;
}
}
}
/**
* 根据指参数向table中添加entry
* put方法会使用此方法
*/
private void addEntry(int hash, K key, V value, int index) {
//结构性修改次数+1
modCount++;
//记录现在的table
Entry<?,?> tab[] = table;
//如果现在的entry数量大于临界值
if (count >= threshold) {
// 扩容
rehash();
//记录新的table
tab = table;
//重新计算key的hash
hash = key.hashCode();
//重新计算index
index = (hash & 0x7FFFFFFF) % tab.length;
} // 创建一个新的entry.
@SuppressWarnings("unchecked")
Entry<K,V> e = (Entry<K,V>) tab[index];
//将entry添加到table中
tab[index] = new Entry<>(hash, key, value, e);
//table大小+1
count++;
} /**
*将“key-value”添加到Hashtable中
* @param key the hashtable key
* @param value the value
* @return the previous value of the specified key in this hashtable,
* or <code>null</code> if it did not have one
* @exception NullPointerException if the key or value is
* <code>null</code>
* @see Object#equals(Object)
* @see #get(Object)
*/
public synchronized V put(K key, V value) {
// Hashtable中不能插入value为null的元素!!!
if (value == null) {
throw new NullPointerException();
} // 若“Hashtable中已存在键为key的键值对”,
// 则用“新的value”替换“旧的value”
Entry<?,?> tab[] = table;
int hash = key.hashCode();
//找到key在table中的索引
int index = (hash & 0x7FFFFFFF) % tab.length;
//获取key所在索引的entry
@SuppressWarnings("unchecked")
Entry<K,V> entry = (Entry<K,V>)tab[index];
//遍历entry,判断key是否已经存在
for(; entry != null ; entry = entry.next) {
//如果key已经存在
if ((entry.hash == hash) && entry.key.equals(key)) {
//保存旧的value
V old = entry.value;
//替换value
entry.value = value;
//返回旧的value
return old;
}
}
//如果key在hashtable不是已经存在,就直接将键值对添加到table中,返回null
addEntry(hash, key, value, index);
return null;
} /**
*删除Hashtable中key对应的元素
* @param key the key that needs to be removed
* @return the value to which the key had been mapped in this hashtable,
* or <code>null</code> if the key did not have a mapping
* @throws NullPointerException if the key is <code>null</code>
*/
public synchronized V remove(Object key) {
Entry<?,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
//从table[index]链表中找出要删除的节点,并删除该节点。
//因为是单链表,因此要保留带删节点的前一个节点,才能有效地删除节点
@SuppressWarnings("unchecked")
Entry<K,V> e = (Entry<K,V>)tab[index];
for(Entry<K,V> prev = null ; e != null ; prev = e, e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
modCount++;
if (prev != null) {
prev.next = e.next;
} else {
tab[index] = e.next;
}
count--;
V oldValue = e.value;
e.value = null;
return oldValue;
}
}
return null;
} /**
*将“Map<? extends K, ? extends V> t”的中全部元素逐一添加到Hashtable中
* @param t mappings to be stored in this map
* @throws NullPointerException if the specified map is null
* @since 1.2
*/
public synchronized void putAll(Map<? extends K, ? extends V> t) {
// //遍历参数t中所有的键值对,将其复制到hashtable中
for (Map.Entry<? extends K, ? extends V> e : t.entrySet())
put(e.getKey(), e.getValue());
} /**
* Clears this hashtable so that it contains no keys.
* 清空Hashtable
* 将Hashtable的table数组的值全部设为null
*/
public synchronized void clear() {
Entry<?,?> tab[] = table;
modCount++;
//遍历hashtable中所有的entry,将其置为null
for (int index = tab.length; --index >= 0; )
tab[index] = null;
//修改hashtable大小为0
count = 0;
} /**
* 克隆一个Hashtable,并以Object的形式返回。
* @return a clone of the hashtable
*/
public synchronized Object clone() {
try {
//调用父类的clone方法,浅拷贝一个HashTable对象t
Hashtable<?,?> t = (Hashtable<?,?>)super.clone();
//给table属性赋值
t.table = new Entry<?,?>[table.length];
//遍历原散列数组,单独地拷贝并生成每个桶的链表。
for (int i = table.length ; i-- > 0 ; ) {
t.table[i] = (table[i] != null)
? (Entry<?,?>) table[i].clone() : null;
}
//给keySet属性赋值
t.keySet = null;
//给entrySet属性赋值
t.entrySet = null;
//给values 属性赋值
t.values = null;
//给modCount 属性赋值
t.modCount = 0;
//返回浅拷贝
return t;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError(e);
}
} /**
* Returns a string representation of this <tt>Hashtable</tt> object
* in the form of a set of entries, enclosed in braces and separated
* by the ASCII characters "<tt>,&nbsp;</tt>" (comma and space). Each
* entry is rendered as the key, an equals sign <tt>=</tt>, and the
* associated element, where the <tt>toString</tt> method is used to
* convert the key and element to strings.
*
* @return a string representation of this hashtable
*/
public synchronized String toString() {
int max = size() - 1;
if (max == -1)
return "{}"; StringBuilder sb = new StringBuilder();
Iterator<Map.Entry<K,V>> it = entrySet().iterator(); sb.append('{');
for (int i = 0; ; i++) {
Map.Entry<K,V> e = it.next();
K key = e.getKey();
V value = e.getValue();
sb.append(key == this ? "(this Map)" : key.toString());
sb.append('=');
sb.append(value == this ? "(this Map)" : value.toString()); if (i == max)
return sb.append('}').toString();
sb.append(", ");
}
} /**
*获取Hashtable的枚举类对象
*若Hashtable的实际大小为0,则返回“空枚举类”对象;
*否则,返回正常的Enumerator的对象。
*/
private <T> Enumeration<T> getEnumeration(int type) {
if (count == 0) {
return Collections.emptyEnumeration();
} else {
return new Enumerator<>(type, false);
}
} /**
* 获取Hashtable的迭代器
* 若Hashtable的实际大小为0,则返回“空迭代器”对象;
* 否则,返回正常的Enumerator的对象。(Enumerator实现了迭代器和枚举两个接口)
*
*/
private <T> Iterator<T> getIterator(int type) {
if (count == 0) {
return Collections.emptyIterator();
} else {
return new Enumerator<>(type, true);
}
} // Views // Hashtable的“key的集合”。它是一个Set,没有重复元素
private transient volatile Set<K> keySet;
// Hashtable的“key-value的集合”。它是一个Set,没有重复元素
private transient volatile Set<Map.Entry<K,V>> entrySet;
// Hashtable的“key-value的集合”。它是一个Collection,可以有重复元素
private transient volatile Collection<V> values; /**
* 返回一个被synchronizedSet封装后的KeySet对象
* synchronizedSet封装的目的是对KeySet的所有方法都添加synchronized,实现多线程同步
* @since 1.2
*/
public Set<K> keySet() {
if (keySet == null)
keySet = Collections.synchronizedSet(new KeySet(), this);
return keySet;
}
/**
*Hashtable的Key的Set集合
*KeySet继承于AbstractSet,所以,KeySet中的元素没有重复的。
* @since 1.2
*/
private class KeySet extends AbstractSet<K> {
public Iterator<K> iterator() {
return getIterator(KEYS);
}
public int size() {
return count;
}
public boolean contains(Object o) {
return containsKey(o);
}
public boolean remove(Object o) {
return Hashtable.this.remove(o) != null;
}
public void clear() {
Hashtable.this.clear();
}
} /**
*返回一个被synchronizedSet封装后的EntrySet对象
*synchronizedSet封装的目的是对EntrySet的所有方法都添加synchronized,实现多线程同步
*/
public Set<Map.Entry<K,V>> entrySet() {
if (entrySet==null)
entrySet = Collections.synchronizedSet(new EntrySet(), this);
return entrySet;
}
/**
* Hashtable的Entry的Set集合
* EntrySet继承于AbstractSet,所以,EntrySet中的元素没有重复的。
*/
private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
public Iterator<Map.Entry<K,V>> iterator() {
return getIterator(ENTRIES);
} public boolean add(Map.Entry<K,V> o) {
return super.add(o);
}
/**
* 查找EntrySet中是否包含Object(0),找到返回true,否则返回false
* 首先,在table中找到o对应的Entry链表
* 然后,查找Entry链表中是否存在Object
*/
public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> entry = (Map.Entry<?,?>)o;
Object key = entry.getKey();
Entry<?,?>[] tab = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry<?,?> e = tab[index]; e != null; e = e.next)
if (e.hash==hash && e.equals(entry))
return true;
return false;
} /**
* 删除元素Object(0)
* 首先,在table中找到o对应的Entry链表
* 然后,删除链表中的元素Object
*/
public boolean remove(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> entry = (Map.Entry<?,?>) o;
Object key = entry.getKey();
Entry<?,?>[] tab = table;
int hash = key.hashCode();
//index为索引位置
int index = (hash & 0x7FFFFFFF) % tab.length;
//遍历查找并删除置空
@SuppressWarnings("unchecked")
Entry<K,V> e = (Entry<K,V>)tab[index];
for(Entry<K,V> prev = null; e != null; prev = e, e = e.next) {
if (e.hash==hash && e.equals(entry)) {
modCount++;
if (prev != null)
prev.next = e.next;
else
tab[index] = e.next; count--;
e.value = null;
return true;
}
}
return false;
} public int size() {
return count;
} public void clear() {
Hashtable.this.clear();
}
} /**
* 返回一个被synchronizedCollection封装后的ValueCollection对象
* synchronizedCollection封装的目的是对ValueCollection的所有方法都添加synchronized,实现多线程同步
* @since 1.2
*/
public Collection<V> values() {
if (values==null)
values = Collections.synchronizedCollection(new ValueCollection(),
this);
return values;
}
/**
* Hashtable的value的Collection集合。
* ValueCollection继承于AbstractCollection,所以,ValueCollection中的元素可以重复的。
*/
private class ValueCollection extends AbstractCollection<V> {
public Iterator<V> iterator() {
return getIterator(VALUES);
}
public int size() {
return count;
}
public boolean contains(Object o) {
return containsValue(o);
}
public void clear() {
Hashtable.this.clear();
}
} // Comparison and hashing /**
* 重写equal方法, 若两个Hashtable的所有key-value键值对都相等,则判断它们两个相等
* @param o object to be compared for equality with this hashtable
* @return true if the specified Object is equal to this Map
* @see Map#equals(Object)
* @since 1.2
*/
public synchronized boolean equals(Object o) {
//如果参数就是hashtable,返回true
if (o == this)
return true;
//如果参数o不是map,返回false
if (!(o instanceof Map))
return false;
Map<?,?> t = (Map<?,?>) o;
//如果大小不同,返回false
if (t.size() != size())
return false; try {
// 通过迭代器依次取出当前Hashtable的key-value键值对
// 并判断该键值对,存在于Hashtable中。
// 若不存在,则立即返回false;否则,遍历完“当前Hashtable”并返回true。
Iterator<Map.Entry<K,V>> i = entrySet().iterator();
while (i.hasNext()) {
Map.Entry<K,V> e = i.next();
K key = e.getKey();
V value = e.getValue();
if (value == null) {
if (!(t.get(key)==null && t.containsKey(key)))
return false;
} else {
if (!value.equals(t.get(key)))
return false;
}
}
} catch (ClassCastException unused) {
return false;
} catch (NullPointerException unused) {
return false;
} return true;
} /**
* 计算Entry的hashCode
* Map interface.
*
* @see Map#hashCode()
* @since 1.2
*/
public synchronized int hashCode() {
int h = 0;
//若 Hashtable的实际大小为0 或者 加载因子<0,则返回0。
if (count == 0 || loadFactor < 0)
//返回0
return h; // Returns zero
//将loadFactor变为负数
loadFactor = -loadFactor; // Mark hashCode computation in progress
Entry<?,?>[] tab = table;
//遍历hashtable中所有的entry
for (Entry<?,?> entry : tab) {
//如果entry不为null
while (entry != null) {
//hashcode加entry的hashcode
h += entry.hashCode();
//准备entry的下个entry
entry = entry.next;
}
}
//将loadFactor变为正数
loadFactor = -loadFactor; // Mark hashCode computation complete
//返回hashcode
return h;
}
/**
*返回指定参数key映射的value,如果没有对应映射,返回默认值defaultValue
*/
@Override
public synchronized V getOrDefault(Object key, V defaultValue) {
V result = get(key);
return (null == result) ? defaultValue : result;
} @SuppressWarnings("unchecked")
@Override
public synchronized void forEach(BiConsumer<? super K, ? super V> action) {
Objects.requireNonNull(action); // explicit check required in case
// table is empty.
final int expectedModCount = modCount; Entry<?, ?>[] tab = table;
for (Entry<?, ?> entry : tab) {
while (entry != null) {
action.accept((K)entry.key, (V)entry.value);
entry = entry.next; if (expectedModCount != modCount) {
throw new ConcurrentModificationException();
}
}
}
} @SuppressWarnings("unchecked")
@Override
public synchronized void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
Objects.requireNonNull(function); // explicit check required in case
// table is empty.
final int expectedModCount = modCount; Entry<K, V>[] tab = (Entry<K, V>[])table;
for (Entry<K, V> entry : tab) {
while (entry != null) {
entry.value = Objects.requireNonNull(
function.apply(entry.key, entry.value));
entry = entry.next; if (expectedModCount != modCount) {
throw new ConcurrentModificationException();
}
}
}
}
/**
*在hashtable中插入参数key和value组成的键值对,如果key已经存在,返回旧value,如果旧value为null,则用参数value替换旧value
*/
@Override
public synchronized V putIfAbsent(K key, V value) {
//判断value是否为null,如果为null,抛出NullPointerException
Objects.requireNonNull(value); // 确认key是不是已经才hashtable中存在
Entry<?,?> tab[] = table;
int hash = key.hashCode();
//获取key在hashtable中的索引
int index = (hash & 0x7FFFFFFF) % tab.length;
//根据key在hashtable中的索引获取对应entry
@SuppressWarnings("unchecked")
Entry<K,V> entry = (Entry<K,V>)tab[index];
//遍历entry中的所有键值对,如果key已经存在,返回旧value,如果旧value为null,则用参数value替换旧value
for (; entry != null; entry = entry.next) {
if ((entry.hash == hash) && entry.key.equals(key)) {
V old = entry.value;
if (old == null) {
entry.value = value;
}
return old;
}
}
//如果,key在entry中不存在,添加entry,返回null
addEntry(hash, key, value, index);
return null;
} /**
* 在hashtable中删除key和value都和参数key和参数value匹配的键值对
*
* @return 如果删除成功,返回true
*/
@Override
public synchronized boolean remove(Object key, Object value) {
//如果value为null,抛出空指针异常
Objects.requireNonNull(value); Entry<?,?> tab[] = table;
int hash = key.hashCode();
//计算key在hashtable中的索引
int index = (hash & 0x7FFFFFFF) % tab.length;
//根据key在hashtable中的索引获取对应entry
@SuppressWarnings("unchecked")
Entry<K,V> e = (Entry<K,V>)tab[index];
//遍历entry,如果entry中存在和参数value和参数key都存在的键值对,则删除这个键值对,并返回true
for (Entry<K,V> prev = null; e != null; prev = e, e = e.next) {
if ((e.hash == hash) && e.key.equals(key) && e.value.equals(value)) {
modCount++;
if (prev != null) {
prev.next = e.next;
} else {
tab[index] = e.next;
}
count--;
e.value = null;
return true;
}
}
//如果entry中不存在和参数value和参数key都存在的键值对,返回false
return false;
} /**
* 在hashtable中查找key和value都和参数key和参数oldValue都匹配的键值对,如果找到,将键值对的value替换为参数newValue
*
* @return 如果替换成功,返回true
*/
@Override
public synchronized boolean replace(K key, V oldValue, V newValue) {
//如果oldValue或者newValue为null,抛出空指针异常
Objects.requireNonNull(oldValue);
Objects.requireNonNull(newValue);
Entry<?,?> tab[] = table;
int hash = key.hashCode();
//计算key在hashtable中的索引
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry<K,V> e = (Entry<K,V>)tab[index];
//遍历entry,如果key和value都和参数key和参数oldValue都匹配的键值对,如果找到,将键值对的value替换为参数newValue,返回true。如果都不匹配,返回false
for (; e != null; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
if (e.value.equals(oldValue)) {
e.value = newValue;
return true;
} else {
return false;
}
}
}
//如果都不匹配,返回false
return false;
} /**
* 在hashtable中查找key和参数key匹配的键值对,如果找到,将键值对的value替换为参数value
*
* @return 如果替换成功,返回键值对的旧value
*/
@Override
public synchronized V replace(K key, V value) {
//如果value为null,抛出空指针异常
Objects.requireNonNull(value);
Entry<?,?> tab[] = table;
int hash = key.hashCode();
//计算key在hashtable中的索引
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
//根据key在hashtable中的索引获取entry
Entry<K,V> e = (Entry<K,V>)tab[index];
//遍历entry,如果存在key和参数key匹配的键值对,将键值对的value替换为参数value,返回true。如果都不匹配,返回null
for (; e != null; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
V oldValue = e.value;
e.value = value;
return oldValue;
}
}
return null;
} @Override
public synchronized V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
Objects.requireNonNull(mappingFunction); Entry<?,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry<K,V> e = (Entry<K,V>)tab[index];
for (; e != null; e = e.next) {
if (e.hash == hash && e.key.equals(key)) {
// Hashtable not accept null value
return e.value;
}
} V newValue = mappingFunction.apply(key);
if (newValue != null) {
addEntry(hash, key, newValue, index);
} return newValue;
} @Override
public synchronized V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
Objects.requireNonNull(remappingFunction); Entry<?,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry<K,V> e = (Entry<K,V>)tab[index];
for (Entry<K,V> prev = null; e != null; prev = e, e = e.next) {
if (e.hash == hash && e.key.equals(key)) {
V newValue = remappingFunction.apply(key, e.value);
if (newValue == null) {
modCount++;
if (prev != null) {
prev.next = e.next;
} else {
tab[index] = e.next;
}
count--;
} else {
e.value = newValue;
}
return newValue;
}
}
return null;
} @Override
public synchronized V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
Objects.requireNonNull(remappingFunction); Entry<?,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry<K,V> e = (Entry<K,V>)tab[index];
for (Entry<K,V> prev = null; e != null; prev = e, e = e.next) {
if (e.hash == hash && Objects.equals(e.key, key)) {
V newValue = remappingFunction.apply(key, e.value);
if (newValue == null) {
modCount++;
if (prev != null) {
prev.next = e.next;
} else {
tab[index] = e.next;
}
count--;
} else {
e.value = newValue;
}
return newValue;
}
} V newValue = remappingFunction.apply(key, null);
if (newValue != null) {
addEntry(hash, key, newValue, index);
} return newValue;
} @Override
public synchronized V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
Objects.requireNonNull(remappingFunction); Entry<?,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry<K,V> e = (Entry<K,V>)tab[index];
for (Entry<K,V> prev = null; e != null; prev = e, e = e.next) {
if (e.hash == hash && e.key.equals(key)) {
V newValue = remappingFunction.apply(e.value, value);
if (newValue == null) {
modCount++;
if (prev != null) {
prev.next = e.next;
} else {
tab[index] = e.next;
}
count--;
} else {
e.value = newValue;
}
return newValue;
}
} if (value != null) {
addEntry(hash, key, value, index);
} return value;
} /**
* 序列化hashtable到ObjectOutputStream中
* 将hashtable的总容量table.length、实际容量count、键值对映射写入到ObjectOutputStream中。键值对映射序列化时是无序的。
*/
private void writeObject(java.io.ObjectOutputStream s)
throws IOException {
Entry<Object, Object> entryStack = null; synchronized (this) {
// 写入临界值和负载因子
s.defaultWriteObject(); // 写入总容量和实际大小
s.writeInt(table.length);
s.writeInt(count); // Stack copies of the entries in the table
for (int index = 0; index < table.length; index++) {
Entry<?,?> entry = table[index]; while (entry != null) {
entryStack =
new Entry<>(0, entry.key, entry.value, entryStack);
entry = entry.next;
}
}
} // 写入hashtable键值对到ObjectOutputStream中
while (entryStack != null) {
s.writeObject(entryStack.key);
s.writeObject(entryStack.value);
entryStack = entryStack.next;
}
} /**
* 反序列化
*/
private void readObject(java.io.ObjectInputStream s)
throws IOException, ClassNotFoundException
{
// 读出临界值和负载因子
s.defaultReadObject(); // 验证负载因子,忽略临界值,因为它会被重新计算
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new StreamCorruptedException("Illegal Load: " + loadFactor); // 读出hashtable总容量和实际大小
int origlength = s.readInt();
int elements = s.readInt(); // 验证实际大小
if (elements < 0)
throw new StreamCorruptedException("Illegal # of Elements: " + elements); // 重新计算总容量,使其大于(实际大小/负载因子)+1
origlength = Math.max(origlength, (int)(elements / loadFactor) + 1); // Compute new length with a bit of room 5% + 3 to grow but
// no larger than the clamped original length. Make the length
// odd if it's large enough, this helps distribute the entries.
// Guard against the length ending up zero, that's not valid.
int length = (int)((elements + elements / 20) / loadFactor) + 3;
if (length > elements && (length & 1) == 0)
length--;
length = Math.min(length, origlength); // Check Map.Entry[].class since it's the nearest public type to
// what we're actually creating.
SharedSecrets.getJavaOISAccess().checkArray(s, Map.Entry[].class, length);
table = new Entry<?,?>[length];
threshold = (int)Math.min(length * loadFactor, MAX_ARRAY_SIZE + 1);
count = 0; // 读出所有的key-value键值对,并将其添加到table中
for (; elements > 0; elements--) {
@SuppressWarnings("unchecked")
K key = (K)s.readObject();
@SuppressWarnings("unchecked")
V value = (V)s.readObject();
// sync is eliminated for performance
reconstitutionPut(table, key, value);
}
} /**
* 此方法被readObject方法使用。
* 提供该方法是因为put方法是可重写的,不应该被readObject调用。
*
* 该方法和put方法在以下几个方面不同:
* 从hashtable容量被初始化开始,不扩容。
* modCount不增长
* 不同步,因为我们在创建一个新的实例
* 不需要返回值
*/
private void reconstitutionPut(Entry<?,?>[] tab, K key, V value)
throws StreamCorruptedException
{
if (value == null) {
throw new java.io.StreamCorruptedException();
}
// Makes sure the key is not already in the hashtable.
// This should not happen in deserialized version.
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry<?,?> e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
throw new java.io.StreamCorruptedException();
}
}
// Creates the new entry.
@SuppressWarnings("unchecked")
Entry<K,V> e = (Entry<K,V>)tab[index];
tab[index] = new Entry<>(hash, key, value, e);
count++;
} /**
* Hashtable的Entry节点,它本质上是一个单向链表。
* 也因此,我们才能推断出Hashtable是由拉链法实现的散列表
*/
private static class Entry<K,V> implements Map.Entry<K,V> {
// 哈希值
final int hash;
final K key;
V value;
// 指向的下一个Entry,即链表的下一个节点
Entry<K,V> next; protected Entry(int hash, K key, V value, Entry<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
} @SuppressWarnings("unchecked")
protected Object clone() {
return new Entry<>(hash, key, value,
(next==null ? null : (Entry<K,V>) next.clone()));
} // Map.Entry Ops public K getKey() {
return key;
} public V getValue() {
return value;
}
// 设置value。若value是null,则抛出异常
public V setValue(V value) {
if (value == null)
throw new NullPointerException(); V oldValue = this.value;
this.value = value;
return oldValue;
}
/**
*覆盖equals()方法,判断两个Entry是否相等。
*/
public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
//若两个Entry的key和value不为null且都相等,则认为它们相等。
return (key==null ? e.getKey()==null : key.equals(e.getKey())) &&
(value==null ? e.getValue()==null : value.equals(e.getValue()));
} public int hashCode() {
return hash ^ Objects.hashCode(value);
} public String toString() {
return key.toString()+"="+value.toString();
}
} // Types of Enumerations/Iterations
private static final int KEYS = 0;
private static final int VALUES = 1;
private static final int ENTRIES = 2; /**
*Enumerator的作用是提供了“通过elements()遍历Hashtable的接口” 和 “通过entrySet()遍历Hashtable的接口”。
*/
private class Enumerator<T> implements Enumeration<T>, Iterator<T> {
// 指向Hashtable的table
Entry<?,?>[] table = Hashtable.this.table;
// Hashtable的总的大小
int index = table.length;
Entry<?,?> entry;
Entry<?,?> lastReturned;
int type; /**
* Enumerator是 “迭代器(Iterator)” 还是 “枚举类(Enumeration)”的标志
* iterator为true,表示它是迭代器;否则,是枚举类。
*/
boolean iterator; /**
* 在将Enumerator当作迭代器使用时会用到,用来实现fail-fast机制。
*/
protected int expectedModCount = modCount; Enumerator(int type, boolean iterator) {
this.type = type;
this.iterator = iterator;
} /**
* 从遍历table的数组的末尾向前查找,直到找到不为null的Entry。
*/
public boolean hasMoreElements() {
Entry<?,?> e = entry;
int i = index;
Entry<?,?>[] t = table;
/* Use locals for faster loop iteration */
while (e == null && i > 0) {
e = t[--i];
}
entry = e;
index = i;
return e != null;
}
/**
* 获取下一个元素
* 注意:从hasMoreElements() 和nextElement() 可以看出“Hashtable的elements()遍历方式”
* 首先,从后向前的遍历table数组。table数组的每个节点都是一个单向链表(Entry)。
*
*/
@SuppressWarnings("unchecked")
public T nextElement() {
Entry<?,?> et = entry;
int i = index;
Entry<?,?>[] t = table;
/* Use locals for faster loop iteration */
//首先,从后向前的遍历table数组。table数组的每个节点都是一个单向链表(Entry)。
while (et == null && i > 0) {
et = t[--i];
}
entry = et;
index = i;
if (et != null) {
Entry<?,?> e = lastReturned = entry;
entry = e.next;
return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);
}
throw new NoSuchElementException("Hashtable Enumerator");
} /**
* 迭代器Iterator的判断是否存在下一个元素
* 实际上,它是调用的hasMoreElements()
*/
public boolean hasNext() {
return hasMoreElements();
}
/**
* 迭代器获取下一个元素
* 实际上,它是调用的nextElement()
*/
public T next() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
return nextElement();
} /**
* 迭代器的remove()接口。
* 首先,它在table数组中找出要删除元素所在的Entry,
* 然后,删除单向链表Entry中的元素。
*/
public void remove() {
if (!iterator)
throw new UnsupportedOperationException();
if (lastReturned == null)
throw new IllegalStateException("Hashtable Enumerator");
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
//查找和删除操作
synchronized(Hashtable.this) {
Entry<?,?>[] tab = Hashtable.this.table;
int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length; @SuppressWarnings("unchecked")
Entry<K,V> e = (Entry<K,V>)tab[index];
for(Entry<K,V> prev = null; e != null; prev = e, e = e.next) {
if (e == lastReturned) {
modCount++;
expectedModCount++;
if (prev == null)
tab[index] = e.next;
else
prev.next = e.next;
count--;
lastReturned = null;
return;
}
}
throw new ConcurrentModificationException();
}
}
}
}

1、二者的存储结构和解决冲突的方法都是相同的。

2、HashTable在不指定容量的情况下的默认容量为11,而HashMap为16,Hashtable不要求底层数组的容量一定要为2的整数次幂,而HashMap则要求一定为2的整数次幂。

3、Hashtable中key和value都不允许为null,而HashMap中key和value都允许为null(key只能有一个为null,而value则可以有多个为null)。但是如果在Hashtable中有类似put(null,null)的操作,编译同样可以通过,因为key和value都是Object类型,但运行时会抛出NullPointerException异常,这是JDK的规范规定的。

4、Hashtable扩容时,将容量变为原来的2倍加1,而HashMap扩容时,将容量变为原来的2倍。

5、Hashtable计算hash值,直接用key的hashCode(),而HashMap重新计算了key的hash值,Hashtable在求hash值对应的位置索引时,用取模运算,而HashMap在求位置索引时,则用与运算,且这里一般先用hash&0x7FFFFFFF后,再对length取模,&0x7FFFFFFF的目的是为了将负的hash值转化为正值,因为hash值有可能为负数,而&0x7FFFFFFF后,只有符号外改变,而后面的位都不变。

6、Hashtable是线程安全的,HashMap不是

推荐阅读:http://www.importnew.com/24822.html

上一篇:质量管理三个概念:QC、QA和QM,你能分得清吗?


下一篇:python爬虫调用搜索引擎及图片爬取实战