Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 6373 | Accepted: 2198 |
【Description】
In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be
.
Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.
Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .
【Input】
The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.
【Output】
For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.
【Sample Input】
3 1
5 0 2
5 1 6
4 2
1 2 7 9
5 6 7 9
0 0
【Sample Output】
83
100
【Hint】
To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).
【算法分析】
所谓的01分数规划问题就是指这样的一类问题,给定两个数组,a[i]表示选取i的收益,b[i]表示选取i的代价。如果选取i,定义x[i]=1,否则x[i]=0。
每一个物品只有选或者不选两种方案,求一个选择方案即从其中选取k组a[i]/b[i],使得R=sigma(a[i]*x[i])/sigma(b[i]*x[i])取得最值,即所有选择物品的总收益/总代价的值最大或是最小。
01分数规划问题主要包含一般的01分数规划、最优比率生成树问题、最优比率环问题等。
来看目标式:
R=sigma(a[i]*x[i])/sigma(b[i]*x[i])
我们的目标是使得R达到最大或者最小,首先定义一个函数
F(L)=sigma(a[i]*x[i])-L*sigma(b[i]*x[i]),显然这只是对目标式的一个简单的变形。
分离参数,得到F(L):=sigma((a[i]-L*b[i])*x[i]),记d[i]=a[i]-L*b[i],那么F(L):=sigma(d[i]*x[i])。
接下来重点注意一下d[i]和F(L)的单调性。
如果我们已知了L,则所有的的d[i]是已知的,那么这里的贪心策略是为了得到一个最优的F(L),我们只需要将d[i]排序之后取其中的前k个或者后k个。也就是说,给定L,我们可以直接求出对应的F(L)。
接下来是F(L),因为b[i]是正的,显然F(L)对于L是单调递减的,这就启发我们可以通过某种方法把F(L)逼近至0,当F(L)=0时,即 sigma(a[i]*x[i])-L*sigma(b[i]*x[i])=0,那么此时的L就是最优值。
然后还要注意到的问题是,我们每次贪心地取d[i]中最小的k个,则最终使得F(L)趋于0的L会是最小的比值;如果每次贪心地取d[i]中最大的k个,则最终使得F(L)趋于0的L会是最大的比值。
考虑F(L):=sigma((a[i]-L*b[i])*x[i])式中,我们取了最后k个di[i]使得F(L)=0,则如果用此时的L去取全部的数,F(L)_tot将是小于零的,也即使得整个F(L)_tot趋于0的L_tot是小于L的。故L是取K组数的情况下,最大的比值。(这段说的有点绕口)
另外再注意到的一点是,如果将a[i]与b[i]上下颠倒,求解的方法相同,结果跟颠倒前也是刚好相对应的。
最后又想到了一个关键点,k的值对最后的结果会是什么影响:
贪心地说,为了使结果尽可能的大,k也要尽可能的大,即尽可能多的舍弃一些,剩下选取的数越少,均值越大
总结F(L)的两个重要性质如下就是:
1. F(L)单调递减
2. F(max(L)/min(L)) = 0
之后的逼近方法可以有两种选择
1.二分法
二分区间,不断把F(L)逼近至0,若F(L)<0说明L过大,若F(L)>0说明L过小,直到逼近得到一个最优的L;
/* ***********************************************
MYID : Chen Fan
LANG : G++
PROG : PKU_2976_Erfen
************************************************ */ #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> #define eps 1e-6 using namespace std; typedef struct nod
{
int a,b;
double r;
} node; bool op(node a,node b)
{
return a.r>b.r;
} node p[]; int main()
{
freopen("2976.txt","r",stdin); int n,k; while(scanf("%d%d",&n,&k))
{
if (n==&&k==) break; for (int i=;i<=n;i++) scanf("%d",&p[i].a);
for (int i=;i<=n;i++) scanf("%d",&p[i].b); int m=n-k;
double left=,right=;
while (left+eps<right)
{
double mid=(left+right)/;
for (int i=;i<=n;i++) p[i].r=p[i].a-mid*p[i].b;
sort(&p[],&p[n+],op);
double temp=;
for (int i=;i<=m;i++) temp+=p[i].r;
if (temp>) left=mid;
else right=mid;
} printf("%.0f\n",left*);
} return ;
}
2.Dinkelbach
从另外一个角度考虑,每次给定一个L,除了我们用来判定的F(L)之外,我们可以通过重新计算得到一个L',而且能够证明L'一定是更接近最优解的,那么我们可以考虑直接把L移动到L'上去。当L=L'时,说明已经没有更接近最优的解了,则此时的L就是最优解。
注意在Dinkelbach算法中,F(L)仍然是判定是否更接近最优解的工具,也即此时d[i]的选择仍然与之前相同,只是最后移动解的时候是把L直接移往L'
/* ***********************************************
MYID : Chen Fan
LANG : G++
PROG : PKU_2976_Dinkelbach
************************************************ */ #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath> #define eps 1e-6 using namespace std; typedef struct nod
{
int a,b,index;
double r;
} node; bool op(node a,node b)
{
return a.r>b.r;
} node p[]; int main()
{
freopen("2976.txt","r",stdin); int n,k; while(scanf("%d%d",&n,&k))
{
if (n==&&k==) break; for (int i=;i<=n;i++) scanf("%d",&p[i].a);
for (int i=;i<=n;i++) scanf("%d",&p[i].b); int m=n-k;
double l=,temp=;
while (fabs(l-temp)>=eps)
{
l=temp;
for (int i=;i<=n;i++) p[i].r=p[i].a-l*p[i].b;
sort(&p[],&p[n+],op);
int x=,y=;
for (int i=;i<=m;i++)
{
x+=p[i].a;
y+=p[i].b;
}
temp=(double)x/y;
} printf("%.0f\n",temp*);
} return ;
}