【洛谷P2494】 [SDOI2011]保密(分数规划+最小割)

洛谷

题意:

题意好绕好绕...不想写了。

思路:

  • 首先类似于分数规划做法,二分答案得到到每个点的最小危险度。
  • 然后就是在一个二分图中,两边撤掉最少的点(相应代价为上面算出的危险度)及相应边,使得中间没有边。
  • 这就是一个最小割,最终的图中不存在\(s\)到\(t\)的路径即可。

代码如下:

/*
* Author: heyuhhh
* Created Time: 2019/10/31 14:47:58
*/
#include <bits/stdc++.h>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '\n'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 705, M = 100005;
const double eps = 1e-3;
int n, m; #define _S heyuhhh
template <class T>
struct Dinic{
struct Edge{
int v, next;
T flow;
Edge(){}
Edge(int v, int next, T flow) : v(v), next(next), flow(flow) {}
}e[M << 1];
int head[N], tot;
int dep[N];
void init() {
memset(head, -1, sizeof(head)); tot = 0;
}
void adde(int u, int v, T w, T rw = 0) {
e[tot] = Edge(v, head[u], w);
head[u] = tot++;
e[tot] = Edge(u, head[v], rw);
head[v] = tot++;
}
bool BFS(int _S, int _T) {
memset(dep, 0, sizeof(dep));
queue <int> q; q.push(_S); dep[_S] = 1;
while(!q.empty()) {
int u = q.front(); q.pop();
for(int i = head[u]; ~i; i = e[i].next) {
int v = e[i].v;
if(!dep[v] && e[i].flow > 0) {
dep[v] = dep[u] + 1;
q.push(v);
}
}
}
return dep[_T] != 0;
}
T dfs(int _S, int _T, T a) {
T flow = 0, f;
if(_S == _T || a == 0) return a;
for(int i = head[_S]; ~i; i = e[i].next) {
int v = e[i].v;
if(dep[v] != dep[_S] + 1) continue;
f = dfs(v, _T, min(a, e[i].flow));
if(f) {
e[i].flow -= f;
e[i ^ 1].flow += f;
flow += f;
a -= f;
if(a == 0) break;
}
}
if(!flow) dep[_S] = -1;
return flow;
}
T dinic(int _S, int _T) {
T max_flow = 0;
while(BFS(_S, _T)) max_flow += dfs(_S, _T, 1e18);
return max_flow;
}
};
Dinic <double> solver; struct Edge{
int v, next, t;
double w;
}e[M << 1];
int head[N], tot;
void adde(int u, int v, int t, double w) {
e[tot].v = v; e[tot].t = t; e[tot].w = w; e[tot].next = head[u]; head[u] = tot++;
}
int n1, m1;
double v[N];
bool vis[N];
double d[N];
double spfa(int T, double x) {
for(int i = 1; i <= n; i++) d[i] = 1e18, vis[i] = false ;
d[n] = 0; vis[n] = true;
queue <int> q; q.push(n);
while(!q.empty()) {
int u = q.front(); q.pop(); vis[u] = false;
for(int i = head[u]; i != -1; i = e[i].next) {
int v = e[i].v;
double w = e[i].t - 1.0 * x * e[i].w;
if(d[v] > d[u] + w) {
d[v] = d[u] + w;
if(!vis[v]) {
vis[v] = true; q.push(v);
}
}
if(v == T && d[v] < eps) return -1;
}
}
return d[T];
} void run(){
memset(head, -1, sizeof(head)); tot = 0;
for(int i = 1; i <= m; i++) {
int a, b, t, s;
cin >> a >> b >> t >> s;
adde(a, b, t, s);
}
cin >> m1 >> n1;
for(int i = 1; i <= n1; i++) {
double l = 0, r = 1e9, ret = 1e9;
while(r - l > eps) {
double mid = (l + r) / 2;
if(spfa(i, mid) <= eps) r = mid, ret = mid;
else l = mid;
}
v[i] = ret;
}
//for(int i = 1; i <= n1; i++) cout << v[i] << ' ';
//cout << '\n';
int S = 0, T = n1 + 1;
solver.init();
for(int i = 1; i <= n1; i++) {
if(i & 1) solver.adde(S, i, v[i]);
else solver.adde(i, T, v[i]);
}
for(int i = 1; i <= m1; i++) {
int u, v; cin >> u >> v;
solver.adde(u, v, 1e9);
}
double ans = solver.dinic(S, T);
if(ans >= 1e9) cout << -1 << '\n';
else cout << ans << '\n';
} int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(1);
while(cin >> n >> m) run();
return 0;
}
上一篇:bzoj 3232: 圈地游戏【分数规划+最小割】


下一篇:HDU 2676 Network Wars 01分数规划,最小割 难度:4