Consider the number triangle shown below. Write a program that calculates the highest sum of numbers that can be passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right.
7 3 8 8 1 0 2 7 4 4 4 5 2 6 5
In the sample above, the route from 7 to 3 to 8 to 7 to 5 produces the highest sum: 30.
PROGRAM NAME: numtri
INPUT FORMAT
The first line contains R (1 <= R <= 1000), the number of rows. Each subsequent line contains the integers for that particular row of the triangle. All the supplied integers are non-negative and no larger than 100.
SAMPLE INPUT (file numtri.in)
5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5
OUTPUT FORMAT
A single line containing the largest sum using the traversal specified.
SAMPLE OUTPUT (file numtri.out)
30
/*
ID: traysen1
TASK: numtri
LANG: C++
*/
#include <bits/stdc++.h>
using namespace std;
int R, tree[1005][1005], dp[1005][1005];
int DP() {
dp[0][0] = tree[0][0];
for (int i = 1; i < R; i++)
for (int j = 0; j <= i; j++) {
if (j == 0) {
dp[i][j] = tree[i][j] + dp[i - 1][j];
} else {
dp[i][j] = tree[i][j] + max(dp[i - 1][j], dp[i - 1][j - 1]);
}
}
int highest_sum = 0;
for (int j = 0; j < R; j++)
highest_sum = max(highest_sum, dp[R - 1][j]);
return highest_sum;
}
int main() {
ifstream fin("numtri.in");
fin >> R;
for (int i = 0; i < R; i++)
for (int j = 0; j <= i; j++)
fin >> tree[i][j];
fin.close();
ofstream fout("numtri.out");
fout << DP() << endl;
fout.close();
return 0;
}