2333: [SCOI2011]棘手的操作[离线线段树]

2333: [SCOI2011]棘手的操作

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 2325  Solved: 909
[Submit][Status][Discuss]

Description

有N个节点,标号从1到N,这N个节点一开始相互不连通。第i个节点的初始权值为a[i],接下来有如下一些操作:

U x y: 加一条边,连接第x个节点和第y个节点

A1 x v: 将第x个节点的权值增加v

A2 x v: 将第x个节点所在的连通块的所有节点的权值都增加v

A3 v: 将所有节点的权值都增加v

F1 x: 输出第x个节点当前的权值

F2 x: 输出第x个节点所在的连通块中,权值最大的节点的权值

F3: 输出所有节点中,权值最大的节点的权值

Input

输入的第一行是一个整数N,代表节点个数。

接下来一行输入N个整数,a[1], a[2], …, a[N],代表N个节点的初始权值。

再下一行输入一个整数Q,代表接下来的操作数。

最后输入Q行,每行的格式如题目描述所示。

Output

对于操作F1, F2, F3,输出对应的结果,每个结果占一行。

Sample Input

3

0 0 0

8

A1 3 -20

A1 2 20

U 1 3

A2 1 10

F1 3

F2 3

A3 -10

F3

Sample Output

-10

10

10

HINT

对于30%的数据,保证 N<=100,Q<=10000

对于80%的数据,保证 N<=100000,Q<=100000

对于100%的数据,保证 N<=300000,Q<=300000

对于所有的数据,保证输入合法,并且 -1000<=v, a[1], a[2], …, a[N]<=1000

Source

线段树+离线操作。

  先离线所有询问,对于所有的U操作先进性预处理,按照读入的顺序用并查集把一个连通块内的点并到一起,并不断的更新每个连通块的最后一个节点。然后按照每个连通块的顺序,把同一个连通块中的节点放到一起,然后用线段树维护。

#include<cstdio>
#include<iostream>
#define lc k<<1
#define rc k<<1|1
using namespace std;
inline int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int N=3e5+;
const int M=N<<;
int n,m,cnt,a[N],dfn[N],w[N];
int fa[N],ed[N],next[N];
int mx[M],de[M];
struct unline{int x,y,op;}q[N];
inline void update(int k){
mx[k]=max(mx[lc],mx[rc]);
}
inline void pushdown(int k){
if(!de[k]) return ;
mx[lc]+=de[k];
mx[rc]+=de[k];
de[lc]+=de[k];
de[rc]+=de[k];
de[k]=;
}
void build(int k,int l,int r){
if(l==r){mx[k]=dfn[l];return ;}
int mid=l+r>>;
build(lc,l,mid);
build(rc,mid+,r);
update(k);
}
void change(int k,int l,int r,int x,int y,int v){
if(l==x&&r==y){
mx[k]+=v;
de[k]+=v;
return ;
}
pushdown(k);
int mid=l+r>>;
if(y<=mid) change(lc,l,mid,x,y,v);
else if(x>mid) change(rc,mid+,r,x,y,v);
else change(lc,l,mid,x,mid,v),change(rc,mid+,r,mid+,y,v);
update(k);
}
int query(int k,int l,int r,int x,int y){
if(l==x&&r==y) return mx[k];
pushdown(k);
int mid=l+r>>;
if(y<=mid) return query(lc,l,mid,x,y);
else if(x>mid) return query(rc,mid+,r,x,y);
else return max(query(lc,l,mid,x,mid),query(rc,mid+,r,mid+,y));
update(k);
}
int find(int x){
return fa[x]==x?x:fa[x]=find(fa[x]);
}
inline void merge(int i){
int r1,r2;
r1=find(q[i].x);r2=find(q[i].y);
if(r1!=r2){
fa[r2]=r1;next[ed[r1]]=r2;ed[r1]=ed[r2];
}
}
int main(){
n=read();
for(int i=;i<=n;i++) a[i]=read();
for(int i=;i<=n;i++) fa[i]=ed[i]=i;
m=read();char s[];
for(int i=;i<=m;i++){
scanf("%s",s);
if(s[]=='U'){
q[i].op=;
q[i].x=read();q[i].y=read();
merge(i);
}
if(s[]=='A'){
q[i].op=s[]-''+;
q[i].x=read();
if(s[]!='') q[i].y=read();
}
if(s[]=='F'){
q[i].op=s[]-''+;
if(s[]!='') q[i].x=read();
}
}
for(int i=;i<=n;i++){
if(fa[i]==i){
for(int j=i;j;j=next[j]){
w[j]=++cnt;dfn[cnt]=a[j];
}
}
}
build(,,n);
for(int i=;i<=n;i++) fa[i]=ed[i]=i;
for(int i=,r;i<=m;i++){
if(q[i].op==) {merge(i);continue;}
if(q[i].op==) change(,,n,w[q[i].x],w[q[i].x],q[i].y);
if(q[i].op==) r=find(q[i].x),change(,,n,w[r],w[ed[r]],q[i].y);
if(q[i].op==) change(,,n,,n,q[i].x);
if(q[i].op==) printf("%d\n",query(,,n,w[q[i].x],w[q[i].x]));
if(q[i].op==) r=find(q[i].x),printf("%d\n",query(,,n,w[r],w[ed[r]]));
if(q[i].op==) printf("%d\n",query(,,n,,n));
}
return ;
}
上一篇:洛谷P3273 [SCOI2011]棘手的操作


下一篇:MaterialWidgetLibrary 学习