2016-05-31 21:45:41
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2333
(学习了黄学长的代码
有如下操作:
U x y: 加一条边,连接第x个节点和第y个节点
A1 x v: 将第x个节点的权值增加v
A2 x v: 将第x个节点所在的连通块的所有节点的权值都增加v
A3 v: 将所有节点的权值都增加v
F1 x: 输出第x个节点当前的权值
F2 x: 输出第x个节点所在的连通块中,权值最大的节点的权值
F3: 输出所有节点中,权值最大的节点的权值
~~~~~~~~~~~~~~萌萌哒分割线~~~~~~~~~~~~~~~~~~~~~~~~
U就是一个合并操作,用可并堆,注意tag的下传
A1将x点从所在堆中删去,修改权值后再加进去。删除就是合并两棵子树,在将merge后节点的父亲改为x的父亲,返回find(merge后的节点),因为x有可能是根
A2的话在所在堆的堆顶上加tag
A3再开一个变量记录好了
F1 记得将祖先的tag标记pushdown
F2 堆顶+A3
F3 比较复杂,网上很多做法都是在来一棵左偏树,维护各个堆的堆顶。在这里学习了黄学长,用multiset来维护,注意要实时更新里面的信息。
#include<bits/stdc++.h>
#define inf 1000000000
#define ll long long
#define N 300005
using namespace std;
int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,Q,overadd,fa[N],tag[N],ls[N],rs[N],v[N],dep[N];
multiset<int> st;
char ch[];
int find(int x){
while(fa[x])x=fa[x];
return x;
}
void pushdown(int x){
if(!tag[x])return;
if(ls[x])tag[ls[x]]+=tag[x],v[ls[x]]+=tag[x];
if(rs[x])tag[rs[x]]+=tag[x],v[rs[x]]+=tag[x];
tag[x]=;
}
int merge(int x,int y){
if(!x||!y)return x+y;
if(v[x]<v[y])swap(x,y);
pushdown(x);
rs[x]=merge(rs[x],y);
fa[rs[x]]=x;
if(dep[ls[x]]<dep[rs[x]])swap(ls[x],rs[x]);
dep[x]=dep[rs[x]]+;
return x;
}
void unite(int x,int y){
int fx=find(x),fy=find(y);
if(fx!=fy){
int t=merge(fx,fy);
if(t==fx)st.erase(st.find(v[fy]));
else st.erase(st.find(v[fx]));
}
}
void Pushdown(int x){
if(fa[x])Pushdown(fa[x]);
pushdown(x);
}
int del(int x){
int t=merge(ls[x],rs[x]),f=fa[x];
ls[x]=rs[x]=fa[x]=;
if(x==ls[f])ls[f]=t;
else rs[f]=t;
fa[t]=f;
return find(t);
}
void add(int x,int val){
Pushdown(x);
st.erase(st.find(v[find(x)]));
v[x]+=val;
st.insert(v[merge(x,del(x))]);
}
void change(int x,int val){
int f=find(x);
tag[f]+=val;v[f]+=val;
st.erase(st.find(v[f]-val));st.insert(v[f]);
}
void getval(int x){
Pushdown(x);
printf("%d\n",v[x]+overadd);
}
int main(){
n=read();
for(int i=;i<=n;i++)v[i]=read(),st.insert(v[i]);
Q=read();
while(Q--){
scanf("%s",ch);
if(ch[]=='A'){
if(ch[]==''){
int x=read(),y=read();add(x,y);
}
else if(ch[]==''){
int x=read(),y=read();change(x,y);
}
else overadd+=read();
}
else if(ch[]=='F'){
if(ch[]=='')getval(read());
else if(ch[]=='')getval(find(read()));
else printf("%d\n",*--st.find(inf)+overadd);
}
else{
int x=read(),y=read();unite(x,y);
}
}
return ;
}
2333: [SCOI2011]棘手的操作
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1621 Solved: 620
[Submit][Status][Discuss]
Description
有N个节点,标号从1到N,这N个节点一开始相互不连通。第i个节点的初始权值为a[i],接下来有如下一些操作:
U x y: 加一条边,连接第x个节点和第y个节点
A1 x v: 将第x个节点的权值增加v
A2 x v: 将第x个节点所在的连通块的所有节点的权值都增加v
A3 v: 将所有节点的权值都增加v
F1 x: 输出第x个节点当前的权值
F2 x: 输出第x个节点所在的连通块中,权值最大的节点的权值
F3: 输出所有节点中,权值最大的节点的权值
Input
输入的第一行是一个整数N,代表节点个数。
接下来一行输入N个整数,a[1], a[2], …, a[N],代表N个节点的初始权值。
再下一行输入一个整数Q,代表接下来的操作数。
最后输入Q行,每行的格式如题目描述所示。
Output
对于操作F1, F2, F3,输出对应的结果,每个结果占一行。
Sample Input
0 0 0
8
A1 3 -20
A1 2 20
U 1 3
A2 1 10
F1 3
F2 3
A3 -10
F3
Sample Output
10
10
HINT
对于30%的数据,保证 N<=100,Q<=10000
对于80%的数据,保证 N<=100000,Q<=100000
对于100%的数据,保证 N<=300000,Q<=300000
对于所有的数据,保证输入合法,并且 -1000<=v, a[1], a[2], …, a[N]<=1000