21.SQL to MongoDB Mapping Chart-官方文档摘录

有关关系型数据库跟Mongod的语法对比

In addition to the charts that follow, you might want to consider the Frequently Asked Questions section for a selection of common questions about MongoDB.

Terminology and Concepts

The following table presents the various SQL terminology and concepts and the corresponding MongoDB terminology and concepts.

SQL Terms/Concepts MongoDB Terms/Concepts
database database
table collection
row document or BSON document
column field
index index
table joins $lookup, embedded documents

primary key

Specify any unique column or column combination as primary key.

primary key

In MongoDB, the primary key is automatically set to the _idfield.

aggregation (e.g. group by)

aggregation pipeline

See the SQL to Aggregation Mapping Chart.

Executables

The following table presents some database executables and the corresponding MongoDB executables. This table is not meant to be exhaustive.

  MongoDB MySQL Oracle Informix DB2
Database Server mongod mysqld oracle IDS DB2 Server
Database Client mongo mysql sqlplus DB-Access DB2 Client

Examples

The following table presents the various SQL statements and the corresponding MongoDB statements. The examples in the table assume the following conditions:

  • The SQL examples assume a table named people.

  • The MongoDB examples assume a collection named people that contain documents of the following prototype:

    {
    _id: ObjectId("509a8fb2f3f4948bd2f983a0"),
    user_id: "abc123",
    age: 55,
    status: 'A'
    }

Create and Alter

The following table presents the various SQL statements related to table-level actions and the corresponding MongoDB statements.

SQL Schema Statements MongoDB Schema Statements
CREATE TABLE people (
id MEDIUMINT NOT NULL
AUTO_INCREMENT,
user_id Varchar(30),
age Number,
status char(1),
PRIMARY KEY (id)
)

Implicitly created on first insertOne() or insertMany()operation. The primary key _id is automatically added if _id field is not specified.

db.people.insertOne( {
user_id: "abc123",
age: 55,
status: "A"
} )

However, you can also explicitly create a collection:

db.createCollection("people")
ALTER TABLE people
ADD join_date DATETIME

Collections do not describe or enforce the structure of its documents; i.e. there is no structural alteration at the collection level.

However, at the document level, updateMany() operations can add fields to existing documents using the $set operator.

db.people.updateMany(
{ },
{ $set: { join_date: new Date() } }
)
ALTER TABLE people
DROP COLUMN join_date

Collections do not describe or enforce the structure of its documents; i.e. there is no structural alteration at the collection level.

However, at the document level, updateMany() operations can remove fields from documents using the $unset operator.

db.people.updateMany(
{ },
{ $unset: { "join_date": "" } }
)
CREATE INDEX idx_user_id_asc
ON people(user_id)
db.people.createIndex( { user_id: 1 } )
CREATE INDEX
idx_user_id_asc_age_desc
ON people(user_id, age DESC)
db.people.createIndex( { user_id: 1, age: -1 } )
DROP TABLE people
db.people.drop()

For more information, see:

Insert

The following table presents the various SQL statements related to inserting records into tables and the corresponding MongoDB statements.

SQL INSERT Statements MongoDB insertOne() Statements
INSERT INTO people(user_id,
age,
status)
VALUES ("bcd001",
45,
"A")
db.people.insertOne(
{ user_id: "bcd001", age: 45, status: "A" }
)

For more information, see db.collection.insertOne().

Select

The following table presents the various SQL statements related to reading records from tables and the corresponding MongoDB statements.

NOTE

The find() method always includes the _id field in the returned documents unless specifically excluded through projection. Some of the SQL queries below may include an _id field to reflect this, even if the field is not included in the corresponding find() query.

SQL SELECT Statements MongoDB find() Statements
SELECT *
FROM people
db.people.find()
SELECT id,
user_id,
status
FROM people
db.people.find(
{ },
{ user_id: 1, status: 1 }
)
SELECT user_id, status
FROM people
db.people.find(
{ },
{ user_id: 1, status: 1, _id: 0 }
)
SELECT *
FROM people
WHERE status = "A"
db.people.find(
{ status: "A" }
)
SELECT user_id, status
FROM people
WHERE status = "A"
db.people.find(
{ status: "A" },
{ user_id: 1, status: 1, _id: 0 }
)
SELECT *
FROM people
WHERE status != "A"
db.people.find(
{ status: { $ne: "A" } }
)
SELECT *
FROM people
WHERE status = "A"
AND age = 50
db.people.find(
{ status: "A",
age: 50 }
)
SELECT *
FROM people
WHERE status = "A"
OR age = 50
db.people.find(
{ $or: [ { status: "A" } ,
{ age: 50 } ] }
)
SELECT *
FROM people
WHERE age > 25
db.people.find(
{ age: { $gt: 25 } }
)
SELECT *
FROM people
WHERE age < 25
db.people.find(
{ age: { $lt: 25 } }
)
SELECT *
FROM people
WHERE age > 25
AND age <= 50
db.people.find(
{ age: { $gt: 25, $lte: 50 } }
)
SELECT *
FROM people
WHERE user_id like "%bc%"
db.people.find( { user_id: /bc/ } )

-or-

db.people.find( { user_id: { $regex: /bc/ } } )
SELECT *
FROM people
WHERE user_id like "bc%"
db.people.find( { user_id: /^bc/ } )

-or-

db.people.find( { user_id: { $regex: /^bc/ } } )
SELECT *
FROM people
WHERE status = "A"
ORDER BY user_id ASC
db.people.find( { status: "A" } ).sort( { user_id: 1 } )
SELECT *
FROM people
WHERE status = "A"
ORDER BY user_id DESC
db.people.find( { status: "A" } ).sort( { user_id: -1 } )
SELECT COUNT(*)
FROM people
db.people.count()

or

db.people.find().count()
SELECT COUNT(user_id)
FROM people
db.people.count( { user_id: { $exists: true } } )

or

db.people.find( { user_id: { $exists: true } } ).count()
SELECT COUNT(*)
FROM people
WHERE age > 30
db.people.count( { age: { $gt: 30 } } )

or

db.people.find( { age: { $gt: 30 } } ).count()
SELECT DISTINCT(status)
FROM people
db.people.distinct( "status" )
SELECT *
FROM people
LIMIT 1
db.people.findOne()

or

db.people.find().limit(1)
SELECT *
FROM people
LIMIT 5
SKIP 10
db.people.find().limit(5).skip(10)
EXPLAIN SELECT *
FROM people
WHERE status = "A"
db.people.find( { status: "A" } ).explain()

For more information, see:

Update Records

The following table presents the various SQL statements related to updating existing records in tables and the corresponding MongoDB statements.

SQL Update Statements MongoDB updateMany() Statements
UPDATE people
SET status = "C"
WHERE age > 25
db.people.updateMany(
{ age: { $gt: 25 } },
{ $set: { status: "C" } }
)
UPDATE people
SET age = age + 3
WHERE status = "A"
db.people.updateMany(
{ status: "A" } ,
{ $inc: { age: 3 } }
)

For more information, see db.collection.updateMany()$set$inc, and $gt.

Delete Records

The following table presents the various SQL statements related to deleting records from tables and the corresponding MongoDB statements.

SQL Delete Statements MongoDB deleteMany() Statements
DELETE FROM people
WHERE status = "D"
db.people.deleteMany( { status: "D" } )
DELETE FROM people
db.people.deleteMany({})

For more information, see db.collection.deleteMany().

上一篇:HBuilder/Mui开发ios使用上拉刷新导致滚动条无法使用的解决方法


下一篇:JavaScript引擎基本原理:Shapes和Inline Caches