题目描述
形如2^{P}-12P−1的素数称为麦森数,这时PP一定也是个素数。但反过来不一定,即如果PP是个素数,2^{P}-12P−1不一定也是素数。到1998年底,人们已找到了37个麦森数。最大的一个是P=3021377P=3021377,它有909526位。麦森数有许多重要应用,它与完全数密切相关。
任务:从文件中输入PP(1000<P<31000001000<P<3100000),计算2^{P}-12P−1的位数和最后500位数字(用十进制高精度数表示)
输入输出格式
输入格式:
文件中只包含一个整数PP(1000<P<31000001000<P<3100000)
输出格式:
第一行:十进制高精度数2^{P}-12P−1的位数。
第2-11行:十进制高精度数2^{P}-12P−1的最后500位数字。(每行输出50位,共输出10行,不足500位时高位补0)
不必验证2^{P}-12P−1与PP是否为素数。
输入输出样例
输入样例#1: 复制
1279
输出样例#1: 复制
386
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000104079321946643990819252403273640855
38615262247266704805319112350403608059673360298012
23944173232418484242161395428100779138356624832346
49081399066056773207629241295093892203457731833496
61583550472959420547689811211693677147548478866962
50138443826029173234888531116082853841658502825560
46662248318909188018470682222031405210266984354887
32958028878050869736186900714720710555703168729087
题解
裸的高精度。。。
就当打一遍板子。。。
代码
//by 减维
#include<cstdio>
#include<iostream>
#include<cstring>
#include<queue>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<map>
#include<bitset>
#include<algorithm>
#define ll long long
using namespace std; struct bignum{
int a[];
int num;
}a,b; bignum operator * (const bignum&x,const bignum&y){
bignum z;
for(int i=;i<=;++i)z.a[i]=;
z.num=;
for(int i=;i<=x.num;++i)
for(int j=;j<=y.num;++j)
{
int tmp=x.a[i]*y.a[j];
tmp+=z.a[i+j-];
z.a[i+j-]=tmp%;
z.a[i+j]+=tmp/;
}
while(z.a[z.num]==)z.num--;
return z;
} int p; int main()
{
scanf("%d",&p);
printf("%d",(int)(log10()*p+));
a.a[]=;a.num=;b.a[]=;b.num=;
a=a*b;
while(p){
if(p&)b=(a*b);
a=(a*a);
p/=;
}
b.a[]--;
for(int i=;i>=;--i){
if(i%==)printf("\n");
printf("%d",b.a[i]);
}
}