使用Relay部署编译ONNX模型
本文介绍如何使用Relay部署ONNX模型的入门。
首先,必须安装ONNX软件包。
一个快速的解决方案是安装protobuf编译器,然后
pip install onnx --user
或参考官方网站。 https://github.com/onnx/onnx
import onnx
import numpy as np
import tvm
from tvm import te
import tvm.relay as relay
from tvm.contrib.download import download_testdata
加载预训练的ONNX模型
使用的示例超分辨率模型与onnx教程http://pytorch.org/tutorials/advanced/super_resolution_with_caffe2.html中的模型完全相同,跳过pytorch模型构建部分,下载保存的onnx模型
model_url = "".join(
[
"https://gist.github.com/zhreshold/",
"bcda4716699ac97ea44f791c24310193/raw/",
"93672b029103648953c4e5ad3ac3aadf346a4cdc/",
"super_resolution_0.2.onnx",
]
)
model_path = download_testdata(model_url, "super_resolution.onnx", module="onnx")
# now you have super_resolution.onnx on disk
onnx_model = onnx.load(model_path)
输出:
File /workspace/.tvm_test_data/onnx/super_resolution.onnx exists, skip.
加载测试图像
一只猫占主导地位的例子!此模型采用尺寸为224x224的单个输入图像,并输出比沿每个轴的输入大3x的缩放图像672x672图像。重新缩放猫咪图像以适合此输入形状,然后转换为YCbCr。然后,超分辨率模型将应用于亮度(Y)通道。
from PIL import Image
img_url = "https://github.com/dmlc/mxnet.js/blob/main/data/cat.png?raw=true"
img_path = download_testdata(img_url, "cat.png", module="data")
img = Image.open(img_path).resize((224, 224))
img_ycbcr = img.convert("YCbCr") # convert to YCbCr
img_y, img_cb, img_cr = img_ycbcr.split()
x = np.array(img_y)[np.newaxis, np.newaxis, :, :]
输出:
File /workspace/.tvm_test_data/data/cat.png exists, skip.
用Relay编译模型
ONNX模型将模型输入值与参数值混合,输入的名称为1。此模型取决于模型,查阅模型的文档,确定完整的输入和参数名称空间。
将形状字典传递给relay.frontend.from_onnx方法,告诉中继哪些ONNX参数是输入,哪些是参数,并提供输入大小的静态定义。
target = "llvm"
input_name = "1"
shape_dict = {input_name: x.shape}
mod, params = relay.frontend.from_onnx(onnx_model, shape_dict)
with tvm.transform.PassContext(opt_level=1):
intrp = relay.build_module.create_executor("graph", mod, tvm.cpu(0), target)
输出:
/workspace/docs/../python/tvm/relay/frontend/onnx.py:3132: UserWarning: Mismatched attribute type in ' : kernel_shape'
==> Context: Bad node spec: input: "1" input: "2" output: "11" op_type: "Conv" attribute { name: "kernel_shape" ints: 5 ints: 5 } attribute { name: "strides" ints: 1 ints: 1 } attribute { name: "pads" ints: 2 ints: 2 ints: 2 ints: 2 } attribute { name: "dilations" ints: 1 ints: 1 } attribute { name: "group" i: 1 }
warnings.warn(str(e))
在TVM上执行
dtype = "float32"
tvm_output = intrp.evaluate()(tvm.nd.array(x.astype(dtype)), **params).asnumpy()
显示结果
将输入和输出图像并列放置。亮度通道Y是模型的输出。调整色度通道Cb和Cr的大小,以与简单的双三次算法匹配。然后将图像重新组合并转换回RGB。
from matplotlib import pyplot as plt
out_y = Image.fromarray(np.uint8((tvm_output[0, 0]).clip(0, 255)), mode="L")
out_cb = img_cb.resize(out_y.size, Image.BICUBIC)
out_cr = img_cr.resize(out_y.size, Image.BICUBIC)
result = Image.merge("YCbCr", [out_y, out_cb, out_cr]).convert("RGB")
canvas = np.full((672, 672 * 2, 3), 255)
canvas[0:224, 0:224, :] = np.asarray(img)
canvas[:, 672:, :] = np.asarray(result)
plt.imshow(canvas.astype(np.uint8))
plt.show()
Readme
默认情况下,ONNX根据动态形状定义模型。ONNX导入器在导入时会保留这种动态性,并且编译器会在编译时尝试将模型转换为静态形状。如果失败,则模型中可能仍存在动态操作。并非所有的TVM内核当前都支持动态形状,如果在使用动态内核时遇到错误,在ask.tvm.apache.org上提出问题。
该特定模型是使用较旧版本的ONNX构建的。在导入阶段,ONNX导入程序将运行ONNX验证程序,这可能会引发不匹配的属性类型警告。由于TVM支持许多不同的ONNX版本,中继模型仍然有效。