1 import tensorflow as tf 2 from sklearn import datasets 3 import numpy as np 4 5 6 x_train = datasets.load_iris().data 7 y_train = datasets.load_iris().target 8 9 10 np.random.seed(116) 11 np.random.shuffle(x_train) 12 np.random.seed(116) 13 np.random.shuffle(y_train) 14 tf.random.set_seed(116) 15 16 17 model = tf.keras.models.Sequential([ 18 tf.keras.layers.Dense(3, activation='softmax', 19 kernel_regularizer=tf.keras.regularizers.l2()) 20 ]) 21 22 model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1), 23 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), 24 metrics=['sparse_categorical_accuracy']) 25 26 model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20) 27 28 29 model.summary()