机器学习算法(一): 基于逻辑回归的分类预测
1 逻辑回归的介绍和应用
1.1 逻辑回归的介绍
逻辑回归(Logistic regression,简称LR)虽然其中带有"回归"两个字,但逻辑回归其实是一个分类模型,并且广泛应用于各个领域之中。虽然现在深度学习相对于这些传统方法更为火热,但实则这些传统方法由于其独特的优势依然广泛应用于各个领域中。
而对于逻辑回归而且,最为突出的两点就是其模型简单和模型的可解释性强。
逻辑回归模型的优劣势:
- 优点:实现简单,易于理解和实现;计算代价不高,速度很快,存储资源低;
- 缺点:容易欠拟合,分类精度可能不高
1.2 逻辑回归的应用
逻辑回归模型广泛用于各个领域,包括机器学习,大多数医学领域和社会科学。例如,最初由Boyd 等人开发的创伤和损伤严重度评分(TRISS)被广泛用于预测受伤患者的死亡率,使用逻辑回归 基于观察到的患者特征(年龄,性别,体重指数,各种血液检查的结果等)分析预测发生特定疾病(例如糖尿病,冠心病)的风险。逻辑回归模型也用于预测在给定的过程中,系统或产品的故障的可能性。还用于市场营销应用程序,例如预测客户购买产品或中止订购的倾向等。在经济学中它可以用来预测一个人选择进入劳动力市场的可能性,而商业应用则可以用来预测房主拖欠抵押贷款的可能性。条件随机字段是逻辑回归到顺序数据的扩展,用于自然语言处理。
逻辑回归模型现在同样是很多分类算法的基础组件,比如 分类任务中基于GBDT算法+LR逻辑回归实现的信用卡交易反欺诈,CTR(点击通过率)预估等,其好处在于输出值自然地落在0到1之间,并且有概率意义。模型清晰,有对应的概率学理论基础。它拟合出来的参数就代表了每一个特征(feature)对结果的影响。也是一个理解数据的好工具。但同时由于其本质上是一个线性的分类器,所以不能应对较为复杂的数据情况。很多时候我们也会拿逻辑回归模型去做一些任务尝试的基线(基础水平)。
说了这些逻辑回归的概念和应用,大家应该已经对其有所期待了吧,那么我们现在开始吧!!!
2 手推公式
逻辑回归的因变量则是一个 0/1 的二分类值,这就需要我们建立一种映射将原先的实值转化为 0/1 值。也就是sigmoid 函数了:
f
(
x
)
=
1
1
+
e
−
x
f(x) = \frac{1}{1+e^{-x}}
f(x)=1+e−x1
函数图形如下:
igmoid 函数还有一个很好的特性就是其求导计算等于下式,这给我们后续求交叉熵损失的梯度时提供了很大便利。
f
′
(
x
)
=
f
(
x
)
(
1
−
f
(
x
)
)
f'(x)=f(x)(1-f(x))
f′(x)=f(x)(1−f(x))
逻辑回归模型的数学推导
由 sigmoid 函数可知逻辑回归模型的基本形式为:
y
=
1
1
+
e
−
W
T
x
+
b
y=\frac{1}{1+e^{-W^Tx+b}}
y=1+e−WTx+b1
对上式转换:
ln
y
1
−
y
=
W
T
x
+
b
\ln \frac{y}{1-y}=W^Tx+b
ln1−yy=WTx+b
由 sigmoid 函数可知逻辑回归模型的基本形式为:
ln
p
(
y
=
1
∣
x
)
p
(
y
=
0
∣
x
)
=
W
T
x
+
b
\ln \frac{p(y=1|x)}{p(y=0|x)}=W^Tx+b
lnp(y=0∣x)p(y=1∣x)=WTx+b
则有
p
(
y
=
1
∣
x
)
=
e
W
T
x
+
b
1
+
e
W
T
x
+
b
=
y
^
p
(
y
=
0
∣
x
)
=
1
1
+
e
W
T
x
+
b
=
1
−
y
^
p(y=1|x)=\frac{e^{W^Tx+b}}{1+e^{W^Tx+b}}=\hat{y}\\p(y=0|x)= \frac{1}{1+e^{W^Tx+b}}=1-\hat{y}
p(y=1∣x)=1+eWTx+beWTx+b=y^p(y=0∣x)=1+eWTx+b1=1−y^
将上式进行简单综合:
p
(
y
∣
x
)
=
y
^
y
(
1
−
y
^
)
1
−
y
p(y|x)=\hat{y}^y(1-\hat{y})^{1-y}
p(y∣x)=y^y(1−y^)1−y
写成对数形式就是我们熟知的交叉熵损失函数了,这也是交叉熵损失的推导由来:
ln
p
(
y
∣
x
)
=
y
l
o
g
y
^
+
(
1
−
y
)
l
o
g
(
1
−
y
^
)
ln
p
(
y
∣
x
)
=
y
l
o
g
1
1
+
e
−
W
T
x
+
b
+
(
1
−
y
)
log
(
1
−
1
1
+
e
−
W
T
x
+
b
)
\ln p(y|x)=ylog\hat{y}+(1-y)log(1-\hat{y})\\\ln p(y|x)=ylog\frac{1}{1+e^{-W^Tx+b}}+(1-y)\log (1-\frac{1}{1+e^{-W^Tx+b}})
lnp(y∣x)=ylogy^+(1−y)log(1−y^)lnp(y∣x)=ylog1+e−WTx+b1+(1−y)log(1−1+e−WTx+b1)
最优化上式子本质上就是我们统计上所说的求其极大似然估计,可基于上式分别关于 W 和b 求其偏导可得:
∂
L
∂
W
=
1
m
x
(
y
^
−
y
)
∂
L
∂
W
=
1
m
∑
i
=
1
m
(
y
^
−
y
)
\frac{\partial L}{\partial W}= \frac{1}{m}x(\hat{y}-y)\\ \frac{\partial L}{\partial W}=\frac{1}{m}\displaystyle\sum_{i=1}^m(\hat{y}-y)
∂W∂L=m1x(y^−y)∂W∂L=m1i=1∑m(y^−y)
基于 W 和 b 的梯度进行权值更新即可求导参数的最优值,使得损失函数最小化,也即求得参数的极大似然估计
3 代码流程
Part1 Demo实践
-
Step1:库函数导入
## 基础函数库 import numpy as np ## 导入画图库 import matplotlib.pyplot as plt import seaborn as sns ## 导入逻辑回归模型函数 from sklearn.linear_model import LogisticRegression
-
Step2:模型训练
##Demo演示LogisticRegression分类 ## 构造数据集 x_fearures = np.array([[-1, -2], [-2, -1], [-3, -2], [1, 3], [2, 1], [3, 2]]) y_label = np.array([0, 0, 0, 1, 1, 1]) ## 调用逻辑回归模型 lr_clf = LogisticRegression() ## 用逻辑回归模型拟合构造的数据集 lr_clf = lr_clf.fit(x_fearures, y_label) #其拟合方程为 y=w0+w1*x1+w2*x2
-
Step3:模型参数查看
## 查看其对应模型的w print('the weight of Logistic Regression:',lr_clf.coef_) ## 查看其对应模型的w0 print('the intercept(w0) of Logistic Regression:',lr_clf.intercept_)
输出结果:
-
Step4:数据和模型可视化
## 可视化构造的数据样本点 plt.figure() plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis') plt.title('Dataset') plt.show()
输出结果:
# 可视化决策边界 plt.figure() plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis') plt.title('Dataset') nx, ny = 200, 100 x_min, x_max = plt.xlim() y_min, y_max = plt.ylim() x_grid, y_grid = np.meshgrid(np.linspace(x_min, x_max, nx),np.linspace(y_min, y_max, ny)) z_proba = lr_clf.predict_proba(np.c_[x_grid.ravel(), y_grid.ravel()]) z_proba = z_proba[:, 1].reshape(x_grid.shape) plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue') plt.show()
输出结果:
### 可视化预测新样本 plt.figure() ## new point 1 x_fearures_new1 = np.array([[0, -1]]) plt.scatter(x_fearures_new1[:,0],x_fearures_new1[:,1], s=50, cmap='viridis') plt.annotate(s='New point 1',xy=(0,-1),xytext=(-2,0),color='blue',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red')) ## new point 2 x_fearures_new2 = np.array([[1, 2]]) plt.scatter(x_fearures_new2[:,0],x_fearures_new2[:,1], s=50, cmap='viridis') plt.annotate(s='New point 2',xy=(1,2),xytext=(-1.5,2.5),color='red',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red')) ## 训练样本 plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis') plt.title('Dataset') # 可视化决策边界 plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue') plt.show()
输出结果:
-
Step5:模型预测
## 在训练集和测试集上分布利用训练好的模型进行预测 y_label_new1_predict = lr_clf.predict(x_fearures_new1) y_label_new2_predict = lr_clf.predict(x_fearures_new2) print('The New point 1 predict class:\n',y_label_new1_predict) print('The New point 2 predict class:\n',y_label_new2_predict) ## 由于逻辑回归模型是概率预测模型(前文介绍的 p = p(y=1|x,\theta)),所有我们可以利用 predict_proba 函数预测其概率 y_label_new1_predict_proba = lr_clf.predict_proba(x_fearures_new1) y_label_new2_predict_proba = lr_clf.predict_proba(x_fearures_new2) print('The New point 1 predict Probability of each class:\n',y_label_new1_predict_proba) print('The New point 2 predict Probability of each class:\n',y_label_new2_predict_proba)
输出结果:
可以发现训练好的回归模型将X_new1预测为了类别0(判别面左下侧),X_new2预测为了类别1(判别面右上侧)。其训练得到的逻辑回归模型的概率为0.5的判别面为上图中蓝色的线。
Part2 基于鸢尾花(iris)数据集的逻辑回归分类实践
在实践的最开始,我们首先需要导入一些基础的函数库包括:numpy (Python进行科学计算的基础软件包),pandas(pandas是一种快速,强大,灵活且易于使用的开源数据分析和处理工具),matplotlib和seaborn绘图。
-
Step1:库函数导入
## 基础函数库 import numpy as np import pandas as pd ## 绘图函数库 import matplotlib.pyplot as plt import seaborn as sns
本次我们选择鸢花数据(iris)进行方法的尝试训练,该数据集一共包含5个变量,其中4个特征变量,1个目标分类变量。共有150个样本,目标变量为 花的类别 其都属于鸢尾属下的三个亚属,分别是山鸢尾 (Iris-setosa),变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。包含的三种鸢尾花的四个特征,分别是花萼长度(cm)、花萼宽度(cm)、花瓣长度(cm)、花瓣宽度(cm),这些形态特征在过去被用来识别物种。
-
Step2:数据读取/载入
## 我们利用 sklearn 中自带的 iris 数据作为数据载入,并利用Pandas转化为DataFrame格式 from sklearn.datasets import load_iris data = load_iris() #得到数据特征 iris_target = data.target #得到数据对应的标签 iris_features = pd.DataFrame(data=data.data, columns=data.feature_names) #利用Pandas转化为DataFrame格式
-
Step3:数据信息简单查看
## 利用.info()查看数据的整体信息 iris_features.info()
输出结果:
## 进行简单的数据查看,我们可以利用 .head() 头部.tail()尾部 iris_features.head()
输出结果:
iris_features.tail()
输出结果:
## 其对应的类别标签为,其中0,1,2分别代表'setosa', 'versicolor', 'virginica'三种不同花的类别。 iris_target
输出结果:
## 利用value_counts函数查看每个类别数量 pd.Series(iris_target).value_counts()
输出结果:
## 对于特征进行一些统计描述 iris_features.describe()
输出结果:
从统计描述中我们可以看到不同数值特征的变化范围。 -
Step4:可视化描述
## 合并标签和特征信息 iris_all = iris_features.copy() ##进行浅拷贝,防止对于原始数据的修改 iris_all['target'] = iris_target
## 特征与标签组合的散点可视化 sns.pairplot(data=iris_all,diag_kind='hist', hue= 'target') plt.show()
输出结果:
从上图可以发现,在2D情况下不同的特征组合对于不同类别的花的散点分布,以及大概的区分能力。for col in iris_features.columns: sns.boxplot(x='target', y=col, saturation=0.5,palette='pastel', data=iris_all) plt.title(col) plt.show()
输出结果:
利用箱型图我们也可以得到不同类别在不同特征上的分布差异情况。# 选取其前三个特征绘制三维散点图 from mpl_toolkits.mplot3d import Axes3D fig = plt.figure(figsize=(10,8)) ax = fig.add_subplot(111, projection='3d') iris_all_class0 = iris_all[iris_all['target']==0].values iris_all_class1 = iris_all[iris_all['target']==1].values iris_all_class2 = iris_all[iris_all['target']==2].values # 'setosa'(0), 'versicolor'(1), 'virginica'(2) ax.scatter(iris_all_class0[:,0], iris_all_class0[:,1], iris_all_class0[:,2],label='setosa') ax.scatter(iris_all_class1[:,0], iris_all_class1[:,1], iris_all_class1[:,2],label='versicolor') ax.scatter(iris_all_class2[:,0], iris_all_class2[:,1], iris_all_class2[:,2],label='virginica') plt.legend() plt.show()
输出结果:
-
Step5:利用 逻辑回归模型 在二分类上 进行训练和预测
## 为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。 from sklearn.model_selection import train_test_split ## 选择其类别为0和1的样本 (不包括类别为2的样本) iris_features_part = iris_features.iloc[:100] iris_target_part = iris_target[:100] ## 测试集大小为20%, 80%/20%分 x_train, x_test, y_train, y_test = train_test_split(iris_features_part, iris_target_part, test_size = 0.2, random_state = 2020)
## 从sklearn中导入逻辑回归模型 from sklearn.linear_model import LogisticRegression ## 定义 逻辑回归模型 clf = LogisticRegression(random_state=0, solver='lbfgs') # 在训练集上训练逻辑回归模型 clf.fit(x_train, y_train)
输出结果:
## 查看其对应的w print('the weight of Logistic Regression:',clf.coef_) ## 查看其对应的w0 print('the intercept(w0) of Logistic Regression:',clf.intercept_)
输出结果:
## 在训练集和测试集上分布利用训练好的模型进行预测 train_predict = clf.predict(x_train) test_predict = clf.predict(x_test)
from sklearn import metrics ## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果 print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict)) print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict)) ## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵) confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test) print('The confusion matrix result:\n',confusion_matrix_result) # 利用热力图对于结果进行可视化 plt.figure(figsize=(8, 6)) sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues') plt.xlabel('Predicted labels') plt.ylabel('True labels') plt.show()
输出结果:
我们可以发现其准确度为1,代表所有的样本都预测正确了。 -
Step6:利用 逻辑回归模型 在三分类(多分类)上 进行训练和预测
## 测试集大小为20%, 80%/20%分 x_train, x_test, y_train, y_test = train_test_split(iris_features, iris_target, test_size = 0.2, random_state = 2020) ## 定义 逻辑回归模型 clf = LogisticRegression(random_state=0, solver='lbfgs') # 在训练集上训练逻辑回归模型 clf.fit(x_train, y_train)
输出结果:
## 查看其对应的w print('the weight of Logistic Regression:\n',clf.coef_) ## 查看其对应的w0 print('the intercept(w0) of Logistic Regression:\n',clf.intercept_) ## 由于这个是3分类,所有我们这里得到了三个逻辑回归模型的参数,其三个逻辑回归组合起来即可实现三分类。
输出结果:
## 在训练集和测试集上分布利用训练好的模型进行预测 train_predict = clf.predict(x_train) test_predict = clf.predict(x_test) ## 由于逻辑回归模型是概率预测模型(前文介绍的 p = p(y=1|x,\theta)),所有我们可以利用 predict_proba 函数预测其概率 train_predict_proba = clf.predict_proba(x_train) test_predict_proba = clf.predict_proba(x_test) print('The test predict Probability of each class:\n',test_predict_proba) ## 其中第一列代表预测为0类的概率,第二列代表预测为1类的概率,第三列代表预测为2类的概率。 ## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果 print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict)) print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))
输出结果:
## 查看混淆矩阵 confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test) print('The confusion matrix result:\n',confusion_matrix_result) # 利用热力图对于结果进行可视化 plt.figure(figsize=(8, 6)) sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues') plt.xlabel('Predicted labels') plt.ylabel('True labels') plt.show()
输出结果:
通过结果我们可以发现,其在三分类的结果的预测准确度上有所下降,其在测试集上的准确度为:86.67%,这是由于’versicolor’(1)和 ‘virginica’(2)这两个类别的特征,我们从可视化的时候也可以发现,其特征的边界具有一定的模糊性(边界类别混杂,没有明显区分边界),所有在这两类的预测上出现了一定的错误。
4 重要知识点
逻辑回归 原理简介:
Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别),所以利用了Logistic函数(或称为Sigmoid函数),函数形式为:
l
o
g
i
(
z
)
=
1
1
+
e
−
z
logi(z)=\frac{1}{1+e^{-z}}
logi(z)=1+e−z1
其对应的函数图像可以表示如下:
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(-5,5,0.01)
y = 1/(1+np.exp(-x))
plt.plot(x,y)
plt.xlabel('z')
plt.ylabel('y')
plt.grid()
plt.show()
通过上图我们可以发现 Logistic 函数是单调递增函数,并且在z=0的时候取值为0.5,并且
l
o
g
i
(
⋅
)
logi(\cdot)
logi(⋅)函数的取值范围为
(
0
,
1
)
(0,1)
(0,1)。
而回归的基本方程为 z = w 0 + ∑ i N w i x i z=w_0+\sum_i^N w_ix_i z=w0+∑iNwixi,
将回归方程写入其中为:
p
=
p
(
y
=
1
∣
x
,
θ
)
=
h
θ
(
x
,
θ
)
=
1
1
+
e
−
(
w
0
+
∑
i
N
w
i
x
i
)
p = p(y=1|x,\theta) = h_\theta(x,\theta)=\frac{1}{1+e^{-(w_0+\sum_i^N w_ix_i)}}
p=p(y=1∣x,θ)=hθ(x,θ)=1+e−(w0+∑iNwixi)1
所以, p ( y = 1 ∣ x , θ ) = h θ ( x , θ ) p(y=1|x,\theta) = h_\theta(x,\theta) p(y=1∣x,θ)=hθ(x,θ), p ( y = 0 ∣ x , θ ) = 1 − h θ ( x , θ ) p(y=0|x,\theta) = 1-h_\theta(x,\theta) p(y=0∣x,θ)=1−hθ(x,θ)
逻辑回归从其原理上来说,逻辑回归其实是实现了一个决策边界:对于函数 y = 1 1 + e − z y=\frac{1}{1+e^{-z}} y=1+e−z1,当 z = > 0 z=>0 z=>0时, y = > 0.5 y=>0.5 y=>0.5,分类为1,当 z < 0 z<0 z<0时, y < 0.5 y<0.5 y<0.5,分类为0,其对应的 y y y值我们可以视为类别1的概率预测值.
对于模型的训练而言:实质上来说就是利用数据求解出对应的模型的特定的 w w w。从而得到一个针对于当前数据的特征逻辑回归模型。
而对于多分类而言,将多个二分类的逻辑回归组合,即可实现多分类。
算法部分参考公众号机器学习实验室的算法数学推导