[BZOJ1007] [HNOI2008] 水平可见直线 (凸包)

Description

  在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.

  例如,对于直线:L1:y=x; L2:y=-x; L3:y=0

  则L1和L2是可见的,L3是被覆盖的.

  给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.

Input

  第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi

Output

  从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格

Sample Input

3
-1 0
1 0
0 0

Sample Output

1 2

HINT

Source

Solution

  按斜率从小到大给直线排序,维护一个下凸壳

  要把新加的线与凸壳的交点以右的直线删掉,因为新加的线一定在它与它之前的线组成的凸壳中

 #include <bits/stdc++.h>
using namespace std;
const double EPS = 1e-;
struct line
{
int id;
double k, b;
bool operator< (const line &rhs) const
{
return fabs(k - rhs.k) < EPS ? b < rhs.b : k < rhs.k;
}
}a[];
int sta[], ans[]; double getx(int x)
{
return (a[sta[x]].b - a[sta[x - ]].b) / (a[sta[x - ]].k - a[sta[x]].k);
} int main()
{
int n, top;
cin >> n;
for(int i = ; i <= n; ++i)
{
cin >> a[i].k >> a[i].b;
a[i].id = i;
}
sort(a + , a + n + );
sta[top = ] = ;
for(int i = ; i <= n; ++i)
{
sta[++top] = i;
while(top > )
if(fabs(a[i].k - a[sta[top - ]].k) < EPS) sta[--top] = i;
else if(top > && getx(top) - getx(top - ) < EPS)
sta[--top] = i;
else break;
}
for(int i = ; i <= top; ++i)
ans[i] = a[sta[i]].id;
sort(ans + , ans + top + );
for(int i = ; i <= top; ++i)
cout << ans[i] << ' ';
cout << endl;
return ;
}
上一篇:spring(读取外部数据库配置信息、基于注解管理bean、DI)


下一篇:win7安装时,避免产生100m系统保留分区的办法