1 LMS 学习规则
1.1 LMS学习规则定义
MSE=(1/Q)*Σe2k=(1/Q)*Σ(tk-ak)2,k=1,2,...,Q
式中:Q是训练样本;t(k)是神经元的期望输出;a(k)是神经元的实际输出。
线性神经网络的目标是寻找最适合的权值W,使得均方差MSE最小,只要对MSE求ω得偏导数,然后让偏导数等于0,那么就可以计算出MSE的极值。
for example:
原始输入:X1=[0 0]T、t1=0,X2=[1 0]T、t2=0,X3=[0 1]T、t3=0,X4=[1 1]T、t4=1。
更改后的输入:X1=[0 0 1]、t1=0,X2=[1 0 1]、t2=0,X3=[0 1 1]、t3=0,X4=[1 1 1]、t4=1。
(1) 初始化权值 W=[ω1,ω2],偏置值 b=b;
(2) 设ω3=b,则W=[ω1,ω2,ω3],更改后的输入如上;
(3) 求解每一个输入的偏差;
(4) 偏差相加求平均;
(5) 对每个权值求偏导数;
(6) 解方程组。
e1=t1-a1=0-X1W=-ω3;
e2=t2-a2=0-X2W=-ω1-ω3;
e3=t3-a3=0-X3W=-ω2-ω3;
e4=t4-a4=1-X4W=1-ω1-ω2-ω3。
MSE=((ω3)2+(ω1+ω3)2+(ω2+ω3)2+(1-ω1-ω2-ω3)2)/4
对MSE的ω1求偏导数,得:∂MSE/∂ω1=ω1+0.5ω2+ω3-0.5;
对MSE的ω2求偏导数,得:∂MSE/∂ω2=0.5ω1+ω2+ω3-0.5;
对MSE的ω3求偏导数,得:∂MSE/∂ω3=ω1+ω2+2ω3-0.5。
使偏导数等于0,可得方程组:
[2 1 2;1 2 2;2 2 4]T*[ω1 ω2 ω3]T=[1 1 1]T。解该方程,可得
ω1= 0.5;
ω2=0.5;
ω3=-0.25。
因此,可得 0.5x1+0.5x2-0.25=0.5 (0.5是因为期望输出为0和1,取其中间值(0+1)/2=0.5)
计算到这步,则可以使用该几何图形将输入的数据在图形上分开,同时得到最佳权值。除用此方法求权值外,还可以使用迭代法计算权值。将在神经网络_线性神经网络 3中讲解 (Nerual Network_Linear Nerual Network)。