给定数组 nums 由正整数组成,找到三个互不重叠的子数组的最大和。
每个子数组的长度为k,我们要使这3*k个项的和最大化。
返回每个区间起始索引的列表(索引从 0 开始)。如果有多个结果,返回字典序最小的一个。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-sum-of-3-non-overlapping-subarrays
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
import java.util.Arrays;
class Solution {
private static int getSum(int[] preSum, int l, int r) {
if (l == 0) {
return preSum[r];
}
return preSum[r] - preSum[l - 1];
}
public static int[] maxSumOfThreeSubarrays(int[] nums, int k) {
if (nums == null || nums.length == 0) {
return new int[3];
}
int n = nums.length;
int[] preSum = new int[n];
preSum[0] = nums[0];
for (int i = 1; i < n; ++i) {
preSum[i] = preSum[i - 1] + nums[i];
}
/**
* forward[i]:直接到i左侧最优的起始位置
*/
int[] forward = new int[n];
/**
* behind[i]:截止到i右侧最优的起始位置
*/
int[] behind = new int[n];
// 0 1 2 3 4 5
forward[k - 1] = 0;
for (int i = k; i < n; ++i) {
forward[i] = getSum(preSum, i - k + 1, i) > getSum(preSum, forward[i - 1], forward[i - 1] + k - 1) ? i - k + 1 : forward[i - 1];
}
behind[n - k] = n - k;
for (int i = n - k - 1; i >= 0; --i) {
behind[i] = getSum(preSum, i, i + k - 1) >= getSum(preSum, behind[i + 1], behind[i + 1] + k - 1) ? i : behind[i + 1];
}
int[] ret = new int[3];
int max = 0;
for (int i = k; i <= n - 2 * k; ++i) {
int sum = getSum(preSum, forward[i - 1], forward[i - 1] + k - 1) +
getSum(preSum, behind[i + k], behind[i + k] + k - 1) +
getSum(preSum, i, i + k - 1);
if (sum > max) {
max = sum;
ret = new int[]{forward[i - 1], i, behind[i + k]};
}
}
return ret;
}
public static void main(String[] args) {
int[] arr = new int[]{1, 2, 1, 2, 6, 7, 5, 1};
int k = 2;
int[] ints = maxSumOfThreeSubarrays(arr, k);
Arrays.stream(ints).forEach(System.out::println);
}
}