sklearn实战-乳腺癌细胞数据挖掘
https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share
http://www.jb51.net/article/53233.htm
本文实例演示了Python生成pdf文件的方法,是比较实用的功能,主要包含2个文件。具体实现方法如下:
pdf.py文件如下:
1
2
3
4
5
6
7
8
|
#!/usr/bin/python from reportlab.pdfgen import canvas
def hello():
c = canvas.Canvas( "helloworld.pdf" )
c.drawString( 100 , 100 , "Hello,World" )
c.showPage()
c.save()
hello() |
diskreport.py文件如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
#!/usr/bin/env python import subprocess
import datetime
from reportlab.pdfgen import canvas
from reportlab.lib.units import inch
def disk_report():
p = subprocess.Popen( "df -h" , shell = True , stdout = subprocess.PIPE)
# print p.stdout.readlines() return p.stdout.readlines()
def create_pdf( input , output = "disk_report.pdf" ):
now = datetime.datetime.today()
date = now.strftime( "%h %d %Y %H:%M:%S" )
c = canvas.Canvas(output)
textobject = c.beginText()
textobject.setTextOrigin(inch, 11 * inch)
textobject.textLines( '''Disk Capcity Report: %s''' % date)
for line in input :
textobject.textLine(line.strip())
c.drawText(textobject)
c.showPage()
c.save()
report = disk_report()
create_pdf(report) |
感兴趣的读者可以调试运行一下,对不足之处加以改进,以实现功能的最佳应用!