BZOJ2288: 【POJ Challenge】生日礼物

2288: 【POJ Challenge】生日礼物

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 284  Solved: 82
[Submit][Status]

Description

ftiasch 18岁生日的时候,lqp18_31给她看了一个神奇的序列 A1, A2, ..., AN. 她被允许选择不超过 M 个连续的部分作为自己的生日礼物。

自然地,ftiasch想要知道选择元素之和的最大值。你能帮助她吗?

BZOJ2288: 【POJ Challenge】生日礼物

Input

第1行,两个整数 N (1 ≤ N ≤ 105) 和 M (0 ≤ M ≤ 105), 序列的长度和可以选择的部分。

第2行, N 个整数 A1, A2, ..., AN (0 ≤ |Ai| ≤ 104), 序列。

Output

一个整数,最大的和。

Sample Input

5 2
2 -3 2 -1 2

Sample Output

5

HINT

Source

题解:

感觉和数据备份这题有点像,但是又转化不过来。。。看了hzwer的题解之后恍然大悟了。。。

首先连在一块的正负相同的肯定可以看成一个点,然后我们就得到了一个正负交替的数列,并且首位两项都是正数(负数去掉)

然后如果正的项数<=m,那显然我们全部选走就获得了最大权值,否则我们需要做一点牺牲。

1)不选某些正项

2)选一些负项使得相邻的正项成为1块

记所有正数之和为sum,我们需要进行上面两种操作使得sum减掉的数最小并且满足只有m块。

我们把所有数的绝对值放入一个堆,每次取最小元素x。sum'-=x

那么如果该数原来是正的,意思是不选它;

如果是负的,意思是把它两边的正数合并。

但直接这样做是不行的,我们必须保证取负的时候两边的正的必须不被取,取正的时候两边的负的不被取。

换句话说,不能选择相邻的两个数!我们成功的将此题转化成了数据备份问题。

orz!

代码:

 #include<cstdio>

 #include<cstdlib>

 #include<cmath>

 #include<cstring>

 #include<algorithm>

 #include<iostream>

 #include<vector>

 #include<map>

 #include<set>

 #include<queue>

 #include<string>

 #define inf 1000000000

 #define maxn 100000+5

 #define maxm 500+100

 #define eps 1e-10

 #define ll long long

 #define pa pair<int,int>

 #define for0(i,n) for(int i=0;i<=(n);i++)

 #define for1(i,n) for(int i=1;i<=(n);i++)

 #define for2(i,x,y) for(int i=(x);i<=(y);i++)

 #define for3(i,x,y) for(int i=(x);i>=(y);i--)

 #define mod 1000000007

 using namespace std;

 inline int read()

 {

     int x=,f=;char ch=getchar();

     while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}

     while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}

     return x*f;

 }
int n,k,s,t,ans,a[maxn],b[maxn],l[maxn],r[maxn];
priority_queue<pa,vector<pa>,greater<pa> >q; int main() { freopen("input.txt","r",stdin); freopen("output.txt","w",stdout); t=read();k=read();
for1(i,t)a[i]=read();while(a[t]<=)t--;
s=;while(a[s]<=)s++;
for(;s<=t;s++)if((a[s]>&&a[s-]>)||(a[s]<=&&a[s-]<=))b[n]+=a[s];else b[++n]=a[s];
for1(i,n)if(b[i]>){ans+=b[i];k--;}else b[i]=-b[i];
if(k>=){cout<<ans<<endl;return ;}
for1(i,n)l[i]=i-,r[i]=i+,q.push(pa(b[i],i));
r[n]=;
for1(i,abs(k))
{
while(b[q.top().second]!=q.top().first)q.pop();
int x=q.top().second;q.pop();
ans-=b[x];
if(!l[x]){b[r[x]]=inf;l[r[x]]=;}
else if(!r[x]){b[l[x]]=inf;r[l[x]]=;}
else
{
b[x]=b[l[x]]+b[r[x]]-b[x];
b[l[x]]=b[r[x]]=inf;
r[l[x]=l[l[x]]]=l[r[x]=r[r[x]]]=x;
q.push(pa(b[x],x));
}
}
cout<<ans<<endl; return ; }

还有一点,之所以赋删去的点的权值为inf是为了不用手打堆,erase233

上一篇:svn版本提交冲突问题解决详解


下一篇:【NLP】依存句法关系符号解释