开发语言:JAVA
开发工具:eclipse (下载地址 http://www.eclipse.org/downloads/)
liblinear版本:liblinear-1.94.jar (下载地址:http://liblinear.bwaldvogel.de/)
更多信息请参考:http://www.csie.ntu.edu.tw/~cjlin/liblinear/
1.下载 liblinear-1.94.jar,导入工程
在工程上右键---->Properties----->选中Java Build Path----->选中Libraries标签----->点击Add External JARs。
找到需要添加的jar包,确定即可。
2.创建LibLinear类 (类名自选)
代码如下:
package liblinear; import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List; import de.bwaldvogel.liblinear.Feature;
import de.bwaldvogel.liblinear.FeatureNode;
import de.bwaldvogel.liblinear.Linear;
import de.bwaldvogel.liblinear.Model;
import de.bwaldvogel.liblinear.Parameter;
import de.bwaldvogel.liblinear.Problem;
import de.bwaldvogel.liblinear.SolverType; public class LibLinear{
public static void main(String[] args) throws Exception {
//loading train data
Feature[][] featureMatrix = new Feature[5][];
Feature[] featureMatrix1 = { new FeatureNode(2, 0.1), new FeatureNode(3, 0.2) };
Feature[] featureMatrix2 = { new FeatureNode(2, 0.1), new FeatureNode(3, 0.3), new FeatureNode(4, -1.2)};
Feature[] featureMatrix3 = { new FeatureNode(1, 0.4) };
Feature[] featureMatrix4 = { new FeatureNode(2, 0.1), new FeatureNode(4, 1.4), new FeatureNode(5, 0.5) };
Feature[] featureMatrix5 = { new FeatureNode(1, -0.1), new FeatureNode(2, -0.2), new FeatureNode(3, 0.1), new FeatureNode(4, -1.1), new FeatureNode(5, 0.1) };
featureMatrix[0] = featureMatrix1;
featureMatrix[1] = featureMatrix2;
featureMatrix[2] = featureMatrix3;
featureMatrix[3] = featureMatrix4;
featureMatrix[4] = featureMatrix5;
//loading target value
double[] targetValue = {1,-1,1,-1,0}; Problem problem = new Problem();
problem.l = 5; // number of training examples:训练样本数
problem.n = 5; // number of features:特征维数
problem.x = featureMatrix; // feature nodes:特征数据
problem.y = targetValue; // target values:类别 SolverType solver = SolverType.L2R_LR; // -s 0
double C = 1.0; // cost of constraints violation
double eps = 0.01; // stopping criteria Parameter parameter = new Parameter(solver, C, eps);
Model model = Linear.train(problem, parameter);
File modelFile = new File("model");
model.save(modelFile);
// load model or use it directly
model = Model.load(modelFile); Feature[] testNode = { new FeatureNode(1, 0.4), new FeatureNode(3, 0.3) };//test node
double prediction = Linear.predict(model, testNode);
System.out.print("classification result: "+prediction);
}
}
运行后得到testNode的分类结果:
3.参数说明
1. SolverType是solver的类型,可以是如下一种:
分类器:
- L2R_LR:L2-regularized logistic regression (primal)
- L2R_L2LOSS_SVC_DUAL:L2-regularized L2-loss support vector classification (dual)
- L2R_L2LOSS_SVC:L2-regularized L2-loss support vector classification (primal)
- L2R_L1LOSS_SVC_DUAL:L2-regularized L1-loss support vector classification (dual)
- MCSVM_CS:supportvector classification by Crammer and Singer
- L1R_L2LOSS_SVC:L1-regularized L2-loss support vector classification
- L1R_LR:L1-regularized logistic regression
- L2R_LR_DUAL:L2-regularized logistic regression (dual)
回归模型:
- L2R_L2LOSS_SVR:L2-regularized L2-loss support vector regression (primal)
- L2R_L2LOSS_SVR_DUAL:L2-regularized L2-loss support vector regression (dual)
- L2R_L1LOSS_SVR_DUAL:L2-regularized L1-loss support vector regression (dual)
2. C 是约束violation的代价参数 (默认为1)
3. eps 是迭代停止条件的容忍度tolerance
本程序采用的训练样本如下(5个训练样本,5维特征):
label | feature1 | feature2 | feature3 | feature4 | feature5 |
1 | 0 | 0.1 | 0.2 | 0 | 0 |
-1 | 0 | 0.1 | 0.3 | -1.2 | 0 |
1 | 0.4 | 0 | 0 | 0 | 0 |
-1 | 0 | 0.1 | 0 | 1.4 | 0.5 |
0 | -0.1 | -0.2 | 0.1 | 1.1 | 0.1 |
测试样本为testNode变量:(0.4,0,0.3,0,0)
本文为原创博客,若转载请注明出处。