OO’s Sequence
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 449 Accepted Submission(s): 158
Problem Description
OO has got a array A of size n ,defined a function f(l,r) represent the number of i (l<=i<=r) , that there's no j(l<=j<=r,j<>i) satisfy ai mod aj=0,now OO want to know
∑i=1n∑j=inf(i,j) mod (10^9+7).
Input
There are multiple test cases. Please process till EOF.
In each test case:
First line: an integer n(n<=10^5) indicating the size of array
Second line:contain n numbers ai(0<ai<=10000)
In each test case:
First line: an integer n(n<=10^5) indicating the size of array
Second line:contain n numbers ai(0<ai<=10000)
Output
For each tests: ouput a line contain a number ans.
Sample Input
5
1 2 3 4 5
1 2 3 4 5
Sample Output
23
Source
求在[a , b] 中有多少个i 满足找不到另一个数j 使,a[i] % a[j] = 0
用L[],R[]分别记录左右离起最近的因子,ans+=(R[i]-i+1)*(i-L[i]+1)/2 %MOD
//自己并没有想到怎么做 (╯▽╰)
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std ;
const int maxn = 100010 ;
const int mod = 1e9+7 ;
int a[maxn];
long long last[maxn] ;
long long pre[maxn] ;
long long l[maxn] ;
long long r[maxn] ;
int main()
{
//freopen("1001.txt" ,"r" ,stdin) ;
int n;
while(~scanf("%d",&n))
{
memset(pre,0,sizeof(pre));
memset(last,0,sizeof(last));
for(int i = 1;i <= n;i++)
{
l[i] = 1;
r[i] = n;
scanf("%d",&a[i]);
for(int j = a[i];j < 10001;j+=a[i])
{
if(pre[j] && r[pre[j]] == n)
r[pre[j]] = i-1;
pre[a[i]] = i;
}
} for(int i = n;i >=1;i--)
{
for(int j = a[i];j < 10001;j+=a[i])
{
if(last[j] && l[last[j]]==1)
l[last[j]] = i+1;
last[a[i]] = i;
}
}
long long ans = 0;
for(long long int i = 1;i <= n;i++)
ans= (ans+(((i-l[i]+1)%mod)*((r[i] - i +1)%mod))%mod)%mod;
printf("%I64d\n",ans);
}
return 0 ;
}