【python实现卷积神经网络】激活函数的实现(sigmoid、softmax、tanh、relu、leakyrelu、elu、selu、softplus)

代码来源:https://github.com/eriklindernoren/ML-From-Scratch

卷积神经网络中卷积层Conv2D(带stride、padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html

激活函数并没有多少要说的,根据公式定义好就行了,需要注意的是梯度公式的计算。

import numpy as np

# Collection of activation functions
# Reference: https://en.wikipedia.org/wiki/Activation_function class Sigmoid():
def __call__(self, x):
return 1 / (1 + np.exp(-x)) def gradient(self, x):
return self.__call__(x) * (1 - self.__call__(x)) class Softmax():
def __call__(self, x):
e_x = np.exp(x - np.max(x, axis=-1, keepdims=True))
return e_x / np.sum(e_x, axis=-1, keepdims=True) def gradient(self, x):
p = self.__call__(x)
return p * (1 - p) class TanH():
def __call__(self, x):
return 2 / (1 + np.exp(-2*x)) - 1 def gradient(self, x):
return 1 - np.power(self.__call__(x), 2) class ReLU():
def __call__(self, x):
return np.where(x >= 0, x, 0) def gradient(self, x):
return np.where(x >= 0, 1, 0) class LeakyReLU():
def __init__(self, alpha=0.2):
self.alpha = alpha def __call__(self, x):
return np.where(x >= 0, x, self.alpha * x) def gradient(self, x):
return np.where(x >= 0, 1, self.alpha) class ELU():
def __init__(self, alpha=0.1):
self.alpha = alpha def __call__(self, x):
return np.where(x >= 0.0, x, self.alpha * (np.exp(x) - 1)) def gradient(self, x):
return np.where(x >= 0.0, 1, self.__call__(x) + self.alpha) class SELU():
# Reference : https://arxiv.org/abs/1706.02515,
# https://github.com/bioinf-jku/SNNs/blob/master/SelfNormalizingNetworks_MLP_MNIST.ipynb
def __init__(self):
self.alpha = 1.6732632423543772848170429916717
self.scale = 1.0507009873554804934193349852946 def __call__(self, x):
return self.scale * np.where(x >= 0.0, x, self.alpha*(np.exp(x)-1)) def gradient(self, x):
return self.scale * np.where(x >= 0.0, 1, self.alpha * np.exp(x)) class SoftPlus():
def __call__(self, x):
return np.log(1 + np.exp(x)) def gradient(self, x):
return 1 / (1 + np.exp(-x))
上一篇:softmax,softmax loss和cross entropy的讲解


下一篇:cnn(卷积神经网络)比较系统的讲解